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A Machine Learning Analysis Utilizing the Norwegian Knee Ligament Register

R. Kyle Martin, MD, FRCSC, Solvejg Wastvedt, BA, Ayoosh Pareek, MD, Andreas Persson, MD, PhD, Håvard Visnes, MD, PhD,
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Investigation performed at the University of Minnesota, Minneapolis, Minnesota

Background: Several factors are associated with an increased risk of anterior cruciate ligament (ACL) reconstruction
revision. However, the ability to accurately translate these factors into a quantifiable risk of revision at a patient-specific
level has remained elusive. We sought to determine if machine learning analysis of the Norwegian Knee Ligament Register
(NKLR) can identify themost important risk factors associated with subsequent revision of primary ACL reconstruction and
develop a clinically meaningful calculator for predicting revision of primary ACL reconstruction.

Methods: Machine learning analysis was performed on the NKLR data set. The primary outcome was the probability of
revision ACL reconstruction within 1, 2, and/or 5 years. Data were split randomly into training sets (75%) and test sets
(25%). Four machine learning models were tested: Cox Lasso, survival random forest, generalized additive model, and
gradient boosted regression. Concordance and calibration were calculated for all 4 models.

Results: The data set included 24,935 patients, and 4.9% underwent a revision surgical procedure during a mean
follow-up (and standard deviation) of 8.1 ± 4.1 years. All 4 models were well-calibrated, with moderate concordance
(0.67 to 0.69). The Cox Lasso model required only 5 variables for outcome prediction. The other models either used
more variables without an appreciable improvement in accuracy or had slightly lower accuracy overall. An in-clinic
calculator was developed that can estimate the risk of ACL revision (Revision Risk Calculator). This calculator can
quantify risk at a patient-specific level, with a plausible range from near 0% for low-risk patients to 20% for high-risk
patients at 5 years.

Conclusions: Machine learning analysis of a national knee ligament registry can predict the risk of ACL reconstruction
revision with moderate accuracy. This algorithm supports the creation of an in-clinic calculator for point-of-care risk
stratification based on the input of only 5 variables. Similar analysis using a larger or more comprehensive data set may
improve the accuracy of risk prediction, and future studies incorporating patients who have experienced failure of ACL
reconstruction but have not undergone subsequent revision may better predict the true risk of ACL reconstruction
failure.

Level of Evidence: Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

T
he anterior cruciate ligament (ACL) is one of the main
knee stabilizers, and its rupture can lead to pain, in-
stability, and functional limitation1. Injury rates have

been rising globally, and surgical reconstruction of the ACL is
often performed to restore normal biomechanics and to im-
prove knee stability2-5. Recent studies have associated several

factors with an increased risk of failed surgical reconstruc-
tion6-14. However, due to the complex relationships between
these various factors, accurate prediction and quantification of
patient-specific risk are challenging.

A novel approach to health-care research, machine
learning, has the potential to improve our predictive capability.
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Machine learning refers to a set of techniques that model
complex relationships between variables in order to predict an
outcome. Relationships can be more complex than those as-
sessed with traditional statistical techniques. Although appli-
cations of machine learning in sports medicine have been slow
to develop, machine learning has broadly impacted the medical
field, including within orthopaedic surgery15,16. Established in
2004, the Norwegian Knee Ligament Register (NKLR) contains
demographic, injury, surgical, and outcome data on >25,000
patients. The NKLR has produced many studies since its in-
ception that have impacted our understanding of ACL
injuries11,12,17,18, and the application of machine learning pre-
sents the opportunity to further evaluate factors associated
with outcome.

Previous studies into the risk factors for ACL recon-
struction failure have assessed the strength of association (effect
measure) and the probability of seeing results at least as strong
as those that were observed if there is no true association
between the independent and the dependent variables. This has
resulted in the identification of numerous factors associated
with outcome such as age, sex, graft choice, fixation method,
body mass index (BMI), and return to pivoting sports11,12,19-21.
Although traditional statistical models require human selection
of variables thought to be of importance, machine learning
allows a computer to consider all possible combinations and
interactions of variables contained in a data set and their
relationships to the outcome of interest. The machine learning
analysis can identify which factors from this much larger pool
are focal in predicting the outcome. As with traditional
methods, machine learning can develop an algorithm to pre-
dict the outcome for future patients. However, more complex
interactions and relationships can be used in machine learning
predictive algorithms, which may yield more accurate and
patient-specific predictive capability.

An accurate predictive model for clinical outcome fol-
lowing ACL reconstruction would be beneficial for both the
orthopaedic surgeon and the patient. This would allow patient
and surgical information to guide shared clinical decision-
making with regard to patient-specific management. There are
currently no machine learning-driven models to predict out-
come after ACL reconstruction based on national knee liga-
ment registry data. The purpose of this study was therefore to
use machine learning analysis of the NKLR to identify the most
important risk factors associated with subsequent revision of
primary ACL reconstruction and develop a clinically meaningful
model for predicting primary ACL reconstruction revision. The
hypothesis was that machine learning analysis would enable
accurate prediction of revision risk for a patient undergoing a
primary ACL reconstruction.

Materials and Methods
Data Preparation

Patients contained within the NKLR with primary ACL
reconstruction surgery dates from January 2004 through

December 2018 were included. Those with missing values for
graft choice were excluded. All variables captured by the reg-

ister were considered for the analysis. We recoded or defined
new variables for the following: years between the injury and
the surgical procedure, meniscus injury identified at the sur-
gical procedure, any additional injury identified at the surgical
procedure, choice of graft (patellar tendon autograft, ham-
string tendon autograft, other), and height and weight variables
that combined data from patient and surgeon-reported varia-
bles. Time to revision was calculated as the number of years
from the primary surgical procedure to revision. For assessing
concordance at specific follow-up times, we considered
patients with a revision at or prior to the time point as expe-
riencing the event. We also created a predictor indicating if a
patient was below the median score in all 4 Knee Injury and
Osteoarthritis Outcome Score (KOOS) categories at the time of
the primary surgical procedure and scaled predictors for KOOS
Quality of Life (QoL) and Sports measures to a score of 10. The
final list of predictor variables included for analysis is presented
in Table I.

Model Creation
The primary outcome was the probability of revision ACL
reconstruction within 1, 2, and/or 5 years. We randomly split
the cleaned data into training sets (75%) that were used to fit
the models and test sets (25%) that were used to evaluate the
models. We used R (version 3.6.1; The R Foundation for Sta-
tistical Computing) to fit several machine learning models to
the training data22. All models and their performance measures
described below account for censoring of our time-to-event
outcome. “Censoring”means that, at any given follow-up time,
we do not have complete information on the outcome for all
patients. This is because some patients have not been in the
registry for the requisite number of years, and others have not yet
experienced revision and it is unknownwhen or if they ultimately
will. Four models intended for this type of data were tested: Cox
Lasso, survival random forest, generalized additivemodel (GAM),
and gradient boosted regression model (GBM). These models are
among the most commonly used in machine learning. The Cox
Lasso model is a semiparametric, penalized regression model that
selects a subset of variables for inclusion23. The survival random
forest model is a tree-based, nonparametric method adapted for
right-censored data such as ours24. GBMs are also nonparametric,
meaning that they do not require prespecification of a model
structure, and iteratively improve the model fit using all available
variables25,26. GAMs allow for machine-selected nonlinear rela-
tionships among a prespecified group of variables27. Further
details on each model are included in Appendix A.

We applied the L1-regularized Cox model (“Cox Lasso,”
package glmnet; lambda value selected via cross-validation) to
select variables and retained those with nonzero coefficients,
shown in the top left of Figure 1. We trained a survival random
forest (function rfsrc from package randomForestSRC) with node
size 200, 10 variables tried per split, 100 trees, and the full set of
predictors (Table I). We trained a GAM (function gam from
package mgcv) with those variables selected in the Cox Lasso,
using a smooth term for the years from injury to surgery pre-
dictor. Finally, we trained aGBM (functions gbm and basehaz.gbm

2

THE JOURNAL OF BONE & JOINT SURGERY d J B J S .ORG

VOLUME 00-A d NUMBER 00 d OCTOBER 18, 2021
PREDICT ING ANTER IOR CRUCIATE LIGAMENT RECONSTRUCTION

REVI S ION

IN
-P

RESS A
RTIC

LE



from package gbm), using the full set of predictors, a shrinkage
parameter of 0.001, and 6,550 trees (number of trees selected via
cross-validation). To maximize accuracy for the tree-based
methods, we used a finer grouping for fixation device variables
(Supplementary Tables 1a, 1b, and 1c). To achieve a more direct
comparison between the models using variable selection and
those using the full set of predictors, we also trained the random
forest and GBM using only predictors selected in the Cox Lasso.
All 4 models were restricted to patients with complete data for the
predictors used (see Table II and Missing Data section below).

Model Evaluation
We evaluated model performance by calculating predicted sur-
vival probabilities for the held-out test data using the trained
models. Model calibration was assessed using a version of the
Hosmer-Lemeshow statistic that accounts for censoring28. Cali-
bration refers to the accuracy of the risk estimates, comparing
the expected outcomes with the actual observed outcomes. This
statistic sums the average misclassification in each predicted risk

TABLE I Characteristics of the Registry Population and Variables
Considered for Machine Learning Analysis

Characteristic or Variable*
Values

(N = 24,935)

Age

At surgery† (yr) 28 ± 11

At injury† (yr) 27 ± 10

Missing data‡ 1,251 (5%)

Sex‡

Male 14,019 (56%)

Female 10,916 (44%)

BMI† (kg/m2) 25.0 ± 3.8

Missing data‡ 7,920 (32%)

KOOS QoL at primary surgery† 3.49 ± 1.86

Missing data‡ 5,149 (21%)

KOOS Sports at primary surgery† 4.28 ± 2.73

Missing data‡ 5,324 (21%)

Below median on all KOOS subscales‡

Yes 3,972 (16%)

No 15,982 (64%)

Missing data 4,981 (20%)

Hospital geographic region‡

Southeast 9,335 (37%)

West 3,974 (16%)

Central 2,162 (8.7%)

North 958 (3.8%)

Missing data 8,506 (34%)

Hospital type‡

Public 16,429 (66%)

Private 8,506 (34%)

Injury‡

Meniscus 13,145 (53%)

Cartilage 5,801 (23%)

Any 171 (0.7%)

Posterior cruciate ligament 398 (1.6%)

Medial collateral ligament 1,993 (8.0%)

Lateral collateral ligament 464 (1.9%)

Posterolateral corner 243 (1.0%)

Missing data 2,720
(10.9%)

Graft choice‡

Bone-patellar tendon-bone autograft 9,891 (40%)

Hamstring autograft 14,481 (58%)

Unknown or other 563 (2.3%)

Tibial fixation device‡

Interference screw 19,283 (77%)

Suspension or cortical device 2,367 (9.5%)

Unknown or other 3,285 (13%)

continued

TABLE I (continued)

Characteristic or Variable*
Values

(N = 24,935)

Femoral fixation device‡

Interference screw 8,287 (33%)

Suspension or cortical device 13,072 (52%)

Unknown or other 3,576 (14%)

Fixation device combination‡

2 interference screws 8,086 (32%)

Interference or suspension 154 (0.6%)

2 suspension or cortical devices 1,809 (7.3%)

Suspension or interference 9,725 (39%)

Unknown or other 5,161 (21%)

Injured side‡

Right 12,675 (51%)

Left 12,260 (49%)

Previous surgical procedure‡

On contralateral knee 1,804 (7.2%)

On ipsilateral knee 4,213 (17%)

Time from injury to primary surgery† (yr) 1.63 ± 3.26

Missing data‡ 1,255 (5%)

Systemic antibiotic prophylaxis‡

Yes 24,769 (99%)

No 108 (0.4%)

Missing data 58 (0.2%)

*All variables represent patient demographic characteristics,
injury, patient-reported outcome scores, or surgical details at
the time of the primary ACL reconstruction. †The values are given
as the mean and the standard deviation. ‡The values are given as
the number of patients, with the percentage in parentheses.
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quintile and converts the sum into a chi-square statistic. Larger
calibration statistics correspond to smaller p values, and signif-
icance means that the null hypothesis of perfect calibration is
rejected. Concordance was calculated using theHarrell C-index29

at 1, 2, and 5-year follow-up times. The C-index measures the
proportion of ranked pairs of observations in which the pre-
dicted ranking corresponds with true outcomes. It is a general-
ization of the area under the curve (AUC) appropriate for
censored data, where not all patients have completed the follow-
up time. As with the AUC, the C-index ranges from 0 to 1, with
1 indicating perfect concordance.

Missing Data
To assess the impact of restricting data to complete cases, we
retrained the models using multiple imputation. This common
statistical technique fills in a patient’s missing data values based
on characteristics of other patients in the population. Because

our population had nontrivial missing data on several varia-
bles, multiple imputation allowed us to gauge the reasonable-
ness of excluding these incomplete observations.We conducted
multivariate imputation by chained equations (MICE) with 5
imputations on both training and test data (functionmice from
package mice). Using the variables with nonzero coefficients in
the complete-case Cox Lasso, we refit the Cox model on

Fig. 1

Feature importance. The 4 plots show relative feature importance in each of the machine learningmodels. The highlighted bars indicate features selected

into the Cox Lasso model. The random forest plot shows variables with importance of >0.0005 and the gradient boosted plot shows variables with

importance of >0, for readability. The orange bars represent variables selected as important in the Cox Lassomodel, and the gray bars represent the other

variables used in the models.

TABLE II Proportion of Complete Cases by Model

Model
Total
Cases

Incomplete
Cases

Complete
Cases

Cox Lasso and GAM 24,935 6,048 76%

Random forest and
GBM

24,935 11,663 53%
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imputed data, averaging predictions over the 5 imputations.
We similarly refit the GAM and the GBM. For the random
forest model, imputation was done using the adaptive tree
imputation algorithm of Ishwaran et al.24, as implemented in
the rfsrc function from the randomForestSRC R package. We
maintained the default of 1 iteration of the algorithm for
imputing training data. Supplementary Tables 2a through 2d
show model performance with imputation on training data
only and training and test data.

Source of Funding
This study was funded by the Norwegian Arthroplasty & Knee
Ligament Register, the University of Oslo School of Medicine,
and a Norwegian Centennial Chair seed grant. Funding sup-
ported the machine learning analysis and interpretation. The
funding agencies had no direct role in the investigation.

Results
Data Characteristics

Table I describes characteristics of the registry population at
the time of the primary surgical procedure and the varia-

bles included for analysis. After data cleaning (5 patients were
excluded for missing graft choice), 24,935 patients met the
inclusion criteria; of these patients, 1,219 (4.9%) underwent a
revision surgical procedure during a mean follow-up period
(and standard deviation) of 8.1 ± 4.1 years. Table III presents
the proportion of patients with complete follow-up at each of
the 3 time points. The population was predominantly male
(56%), with a mean age of 27 ± 10 years at the time of the
primary injury and 28 ± 11 years at the time of the surgical
procedure.

To assess the potential impact of missing data on our
results, we compared covariate distributions between complete
cases and the full data set (Supplementary Tables 1a, 1b, and
1c). Although the large sample size results in the complete cases
and the full data set being significantly different (p < 0.05) on
multiple variables, the magnitudes of the between-group dif-
ferences were generally small and not clinically meaningful.

Model Performance
All 4 models were generally well-calibrated, with concor-
dance in the moderate range (0.67 to 0.69). Only the 2-year

TABLE III Description of Censoring

Follow-up Time Patients with Revision*
Patients with Complete

Follow-up and No Revision*
Patients with Incomplete

Follow-up and No Revision*†

1 year 190 (0.8%) 22,908 (91.9%) 1,837 (7.4%)

2 years 529 (2.1%) 20,703 (83.0%) 3,703 (14.9%)

5 years 999 (4.0%) 15,107 (60.6%) 8,829 (35.4%)

*The values are given as the number of patients, with the percentage in parentheses. †This category represents patients who have not yet
reached the specified end point.

TABLE IV Model Performance Measures

Model Concordance Calibration Statistic Calibration P Value

Probability of revision: 1 year

Cox Lasso 0.686 4.89 0.18

Random forest 0.672 3.12 0.374

GAM 0.687 4.79 0.188

GBM 0.669 4.98 0.174

Probability of revision: 2 years

Cox Lasso 0.684 11.35 0.01

Random forest 0.67 11.66 0.009

GAM 0.685 11.19 0.011

GBM 0.666 3.76 0.288

Probability of revision: 5 years

Cox Lasso 0.683 6.19 0.103

Random forest 0.67 3.71 0.295

GAM 0.684 6.98 0.073

GBM 0.665 0.38 0.944
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Cox Lasso model, random forest model, and GAM had
calibration p values between 0.01 and 0.05, suggesting
modest evidence of miscalibration (Table IV). The GBM
had a small edge in calibration for 2-year and 5-year follow-
up times. However, concordance was slightly lower for the
GBM and the random forest model at all follow-up times
(0.67 compared with 0.68).

Imputing missing data did not significantly improve
performance for any of the models (Supplementary Tables 2a
through 2d). When the random forest model and the GBM
were restricted to the Cox Lasso predictors, calibration wors-
ened substantially when limited to complete cases and stayed
about the same under imputation. Concordance was virtually
unchanged (Supplementary Tables 3a and 3b).

Factors Predicting Outcome
The most important predictors for revision in the Cox
Lasso model, in order, were graft choice, femoral fixation
device, KOOS QoL at the time of the surgical procedure,
years from the injury to the surgical procedure, and age at
the time of the surgical procedure. In the random forest
model, predictors in the top third by variable importance
score also included age at the time of the injury, tibial fix-
ation device, and fixation device combination. The most
important features in both the GAM and the GBM were
relatively similar to those in the Cox Lasso model. The Cox
Lasso model and the GAM quantify feature importance in
terms of effect size associated with the variable. The other
models use the difference in the model error rate that
results if the feature is removed (Fig. 1).

Risk-Prediction Calculator
The Cox Lasso model was selected to create an easy-to-use in-
clinic calculator to predict the risk of ACL reconstruction
revision (Revision Risk Calculator). Whereas the overall risk

of revision in the registry was 4.9%, this calculator can
quantify the risk at a patient-specific level, with a plausible
range from near 0% for low-risk patients to 20% for high-
risk patients at 5 years. Table V, Figure 2, and Video 1 dem-
onstrate examples of the calculator’s risk prediction using 3
sample patients.

Discussion

The most important finding of this study was that machine
learning analysis of a knee ligament register allows the

creation of a validated algorithm to predict a patient’s risk of
ACL reconstruction revision with moderate accuracy.
Additionally, despite having 24 possible prognostic variables
contained within the NKLR, the algorithm required only 5
factors for prediction: age and KOOS QoL at the time of the
primary surgical procedure, graft choice, femoral fixation
device, and the number of years between the injury and the
primary surgical procedure. Using this algorithm, an in-clinic
calculator was developed that can estimate revision risk.

This study represents the first machine learning-driven
model for predicting the outcome of ACL reconstruction
at a patient-specific level. Currently, the risk of a patient
undergoing a revision ACL reconstruction is estimated on the
basis of clinical experience and subjective consideration of the
known risk factors. Although it is generally accepted that these
factors influence the outcome, the ability to accurately quantify
this risk has remained elusive. For the clinician, the introduc-
tion of an easy-to-use calculator can guide the patient-specific
discussion surrounding the surgical options and realistic out-
come goals.

Machine learning is a relatively new tool in the
health-care research realm. In this study, 4 models were
used to analyze the data and create algorithms predicting
the risk of undergoing a revision ACL reconstruction. All
models first identified which factors were predictive of a

TABLE V Randomly Selected Example Patients from 3 Predicted 5-Year Risk Groups*

Variable Low-Risk Patients Medium-Risk Patients High-Risk Patients

Age (yr) 39 15 15

KOOS QoL at primary
surgery (points)

25 25 6

Graft choice Hamstring autograft Bone-patellar tendon-bone autograft Hamstring autograft

Femoral fixation device Suspension or cortical device Interference screw Suspension or cortical device

Time between injury and
primary surgery (mo)

14 9 8

Risk of revision

At 1 year 0.5% 1.2% 2.8%

At 2 years 1.4% 3.6% 8.5%

At 5 years 2.8% 7.2% 17.2%

*Low (<5%),medium (between5%and 15%), and high (>15%). The patients’ values for each variable used in the Coxmodel are given, alongwith the
Cox model-predicted risk of revision at 1, 2, and 5 years.
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revision surgical procedure and then calculated the relative
weight of their influence on the risk of this outcome. Of all
of the various factors contained within the registry, the Cox
Lasso model identified only 5 variables necessary to predict
outcome, and the other 3 models either used more variables
without an appreciable improvement in accuracy or had
slightly lower accuracy overall. For this reason, the Cox
Lasso model was selected for creation of the in-clinic
calculator.

It is interesting to note that several variables that have
previously been considered important for predicting ACL re-
construction failure were not necessary for inclusion in the Cox
Lasso machine learning model. Some examples include sex19,
tibial fixation12, and increased BMI20. Variables were excluded
from this model using the Lasso technique, which retains only
those predictors adding significantly to the model’s accuracy.
Although these previously identified risk factors are no doubt
associated with outcome, the Lasso method suggests that they
are either less important than the factors selected by the Lasso
or somehow represented in those factors. In comparison with
the Cox Lasso model, the random forest model and the GBM
included more variables. However, this inclusion did not sig-
nificantly improve performance. The reason for this is similar:
the information offered by these added variables is already
contained within the few most important predictors, so adding
the extra variables does not improve performance. All 5 of the
variables that were found to be important for outcome pre-

diction have previously been identified as being associated with
an increased risk of revision ACL reconstruction11,12,14,17,20,21,30.

Revision ACL reconstruction was selected as the primary
outcome measure for this study because of the long follow-up
and completeness of the data provided for this end point. This
is in contrast to a study designed to predict ACL reconstruction
failure based on revision surgical procedures and/or inferior
patient-reported outcomes. Although this wider outcome
would also capture patients who experience a failure but do not
undergo a subsequent revision surgical procedure, the number
of patients within the register with patient-reported outcome
measures substantially drops over time. In contrast, the overall
compliance with data entry in the register is 86%4. Machine
learning analysis requires a large volume of robust data and we
therefore chose this narrower outcome measure to maximize
patient inclusion and model accuracy.

There were limitations to the current study. First,
although we considered a variety of machine learning methods
in this analysis, it is possible that a model not considered might
have performed better. Second, there were substantial missing
data in some predictors such as BMI (32%) and preoperative
KOOS (21%), and we could not rule out that data were not
missing at random. We noted that observations with complete
data for all variables included in the random forest model and
the GBM tended to be newer to the registry than incomplete
observations, possibly reflecting improvement in data collec-
tion over time. Additionally, revision was a relatively rare

Fig. 2

Risk of revision ACL reconstruction in 3 randomly selected example patients corresponding with Table V.
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outcome in these data (<5% of individuals), and most patients
were predicted as being at low risk for revision. For this large
majority of low-risk patients, functional scores might have
offered more clinical insight.

There were also limitations with regard to the clinical
application of this analysis. Especially in the case of the random
forest model and the GBM, our models used variables that may
not have been readily available in a clinical setting. Clinical
utility was greatest with the Cox Lasso model, which required
only 5 variables and showed no significant difference in per-
formance from the more complex models. Further, the results
of this study may not be applicable to populations in other
countries as they represented data from a single national reg-
ister. Although national registers offer generalizability and real-
world applicability31, the large number of surgeons included in
the data collection may also have produced wide variability in
surgical decision-making, skill, and technique. Finally,
although the machine learning algorithm was well-calibrated,
the concordance was moderate. The accuracy of the model
would presumably be improved if a larger data set, such as one
composed of combined data from multiple registries or one
that included additional variables, was assessed. Potentially
important variables may include coronal or sagittal alignment
(tibial slope), physical examination findings, rehabilitation
information, or surgical technique details such as tunnel
position or graft size.

In conclusion, machine learning analysis of a national
knee ligament register can predict the risk of ACL recon-
struction revision with moderate accuracy. This supports the
creation of an in-clinic calculator for point-of-care risk strati-
fication based on the input of only 5 variables. Similar analysis
using larger or more comprehensive data may improve the
accuracy of risk prediction, and future studies incorporating
patients who have experienced a failure of ACL reconstruction
but have not undergone subsequent revision may better predict
the true risk of ACL reconstruction failure.

Appendix
Supporting material provided by the authors is posted
with the online version of this article as a data supplement

at jbjs.org (http://links.lww.com/JBJS/G759). n
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