
A Simulation Study of Goodness-of-Fit
Tests for Binary Regression with

Applications to Norwegian Intensive
Care Registry Data

Ellisif Nygaard

Supervisor: Geir Drage Berentsen

Øystein A. Haaland

Department of Mathematics
University of Bergen

This dissertation is submitted in partial fulfillment of the requirements for the
degree of

Master of Science in Statistics (Data Analysis)

The Faculty of Mathematics and
Natural Sciences January 2019





Acknowledgements

I would like to thank my advisers Geir Drage Berentsen and Øystein Ariansen Haaland for
introducing me to this topic and their guidance throughout the process of writing this thesis.
I am also grateful to the Department of Heart Disease at Haukeland University Hospital for
valuable experience, and their patience and generosity. In addition, I would like to thank the
Norwegian Intensive Care Registry (NIR) for providing an unique data set.

Many thanks to friends and family for their indispensable cheers of encouragement. I am
also grateful for the proofreading and feedback received from Ranveig Nygaard. And I am
grateful that this process is finally over.





Abstract

When using statistical methods to fit a model, the consensus is that it is possible to represent
a complex reality in the form of a simpler model. It is helpful to systematically measure a
model’s ability to capture the underlying system which controls the data generation in the
population being examined.

One of the possible tools we can apply to evaluate model adequacy is goodness-of-
fit (GOF) tests. Summary GOF statistics are computed for a specific fitted model, then
attributed an asymptotic distribution, and finally the null hypothesis that the model fits the
data adequately is tested. A great challenge, when the model is a binary regression model
and it has one or several continuous covariates, is to verify which asymptotic distributions
the GOF statistics in fact have (Hosmer et al., 1997).

In this thesis, we will evaluate the validity of the distributions of some established GOF
test statistics mentioned in the literature. We have chosen so-called global GOF tests, where
user input is not necessary. Tests demanding user input, such as the Hosmer-Lemeshow test,
have been shown to have some considerable disadvantages. Hosmer et al. (1997) states that
number of groups (which are determined by user discretion) can influence whether the GOF
test rejects the model fit or not.

Binary regression models present a specific set of challenges with regards to GOF
measures, especially in situations where at least one covariate is continuous. There appears to
be no broad general agreement on which GOF statistics are reliable options when fitting such
models. This thesis aims to extend the current knowledge in this area. A modified version of
one of the statistics is introduced. The GOF tests studied are later applied in a data analysis
on real data set from the Norwegian Intensive Care Registry (NIR).

An exploration was performed in the attempt to suggest a suitable tool to evaluate the
discrepancies between the estimated logistic probabilities and the outcome variable, and how
different GOF tests will behave for different categories of discrepancies.
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Chapter 1

Introduction to Binary Regression

1.1 The Classical Linear Regression Model

Let the data (yi,xi1, . . . ,xik), i = 1, . . . ,n, consist of n observations of the continuous response
variable y and the k covariates x1, . . . ,xk. The covariates can be continuous or categorical. In
Fahrmeir et al. (2013), the classical linear regression model is given by

yi = β0 +β1xi1 + . . .+βkxik + εi, i = 1, . . . ,n,

where the error terms ε1,ε2, . . . ,εn are assumed to be independent and identically normally
distributed with E(εi) = 0 and Var(εi) = σ2. The model is linear in the parameters β0, . . . ,βk,
whereas the covariates can be non-linear expressions.

The following quantity, which represents the influence the covariates have on the model,
is referred to as a linear predictor:

ηi = β0 +β1xi1 + . . .+βkxik = xxxTi βββ , (1.1)

where xxxTi = [1 xi1 xi2 . . . xik] and βββ = [β0 β1 . . . βk]
T. This can be expressed in vector

form as

yyy = XXXβββ + εεε , and (1.2)

E(yyy) = µµµ = XXXβββ , (1.3)
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where yyy = [y1 y2 . . . yn]
T, and µµµ = [µ1 µ2 . . . µn]

T. The matrix XXX , which is often called
the design matrix, is defined as

XXX =


1 x11 x12 · · · x1k

1 x21 x22 · · · x2k
...

... . . . ...
1 xn1 xn2 · · · xnk

=


xxxT1
xxxT2
...

xxxTn

 ,

and XXXβββ is the linear component of the classical linear regression model.

In this setting, the ordinary least squares (OLS) estimate and the maximum likelihood
estimate (MLE) of βββ are identical, and given by

β̂ββ = (XXXTXXX)−1XXXTyyy. (1.4)

Once the model parameters have been fitted to the data in XXX , the linear combinations of βββ

and the rows of the design matrix comprise the estimated linear predictors:

η̂i = xxxTi β̂ββ = β̂0 + β̂1xi1 + . . .+ β̂kxik. (1.5)

Due to the model assumptions, the estimated linear predictors are suitable estimators for
E(yi) = E(yi|xi1, . . . ,xik) = E(β0+β1xi1+ . . .+βkxik+εi) = β0+β1xi1+ . . .+βkxik. Hence
η̂i is used to predict yi, i.e. ŷyy = XXX β̂ββ . The classical linear regression is applied in prediction,
forecasting, and when quantifying the strength of linear relationships.

1.2 Generalised Linear Models (GLMs)

Classical linear regression models can be generalised in order to permit response variables
whose errors are not normally distributed. GLMs are extensions of linear models which
facilitate modelling non-normal response variables. A GLM consists of three components:

1) The random component,

2) the systematic component, and

3) the link function.

The response variables Y1, . . . ,Yn are the random component. A standard assumption is
that the response variables are random and independent, but not identically distributed. They
each have a distribution in canonical form from the same exponential family. In some cases,
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the observations of Y1, . . . ,Yn are binary, taking on values such as "0" and "1", or "success"
and "failure".

The systematic component is the function of the covariates x1, . . . ,xk which is related to
the expected value of Y1, . . . ,Yn. Just as in classical linear regression, the function is called
the linear predictor and takes the usual form:

ηi = β0 +β1xi1 + . . .+βkxik = xxxTi βββ , (1.6)

where, as before, xxxTi = [1 xi1 xi2 . . . xik] and βββ = [β0 β1 . . . βk]
T.

Finally, the link function connects the random component and the systematic component
by stating that

g(µi) = xxxTi βββ , (1.7)

where µi = E(Yi) and g(·) is the link function. In a GLM framework, g is a differentiable and
monotone function; i.e. its first derivative does not change sign (Dobson, 2008). The inverse
link function, g−1(·), also called the mean function, is such that g−1(ηi) = µi. In models
where the relationship µi = xxxTi βββ is assumed, i.e. g(µi) = µi, the link function is called the
identity link.

However, µi is often non-linearly related to the linear predictor. Several of the distribu-
tions a response variables may have, impose restrictions on the mean. For example, when µi

cannot be negative, which is the case with count data, the link function g(µi) = log(µi) may
be suitable. This link function is called the log link.

In some cases, such as when the response variables are Bernoulli distributed, µi must
be restricted to the interval [0,1]. A common procedure is to choose a probability density
function, referred to as the tolerance distribution, and subsequently use the corresponding
cumulative distribution function (CDF) to model the mean. Thus, the link function is derived
from the CDF.

If the standard normal distribution is the chosen tolerance distribution, for example, the
mean would be modelled as follows:

µi = Φ(ηi) = g−1(ηi), (1.8)

where Φ(·) is the CDF of the standard normal distribution. As a result, the link function is
g(µi) = Φ−1(ηi), which is known as the probit link. GLMs where Y1,Y2, . . . ,Yn are Bernoulli
distributed, and link functions such as the probit link are appropriate, are covered in the
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following section.

1.3 Binary Regression Models

Binary response variables, also referred to as dichotomous responses, are commonplace in
statistical analysis. This type of categorical response takes on the values 0 ("failure") or
1 ("success") to indicate the occurrence of a particular characteristic or event. Whether a
tumour is malignant or benign, and whether a customer is loyal or chooses a competitor, are
examples of responses one may wish to model.

The expected value of a binary variable Y (which is Bernoulli distributed) is given by

E(Y ) = 0 ·P(Y = 0)+1 ·P(Y = 1) = P(Y = 1).

Hence in the case of binary response variables, the expectation is also a probability. In
order to underline this fact, we define π to be equal to the probability of success, i.e.
π = P(Y = 1) = E(Y ), and use the following notation:

πi = π(ηi) = P(Yi = 1 | xxxi) = g−1(ηi), (1.9)

for GLMs where Y1, . . . ,Yn are dichotomous.

Observations with identical rows in the design matrix, can be grouped into N distinct
subgroups called covariate patterns. If the data can be aggregated in this manner, we define
the responses Y1, . . . ,YN as the number of "successes" with probability π j among n j "trials"
in covariate pattern j, i.e. Yj ∼ Bin(n j,π j), where j = 1, . . . ,N.

Often when including a continuous variable in in one’s model (or when multiple covariates
are multicategorical), the number of covariate patterns is equal to n. According to Hosmer
(2013), this is the most common number of covariate patterns in practice when there is at
least one continuous covariate in the model. This thesis will only consider aspects of binary
regression related to ungrouped Bernoulli responses, i.e. only cases where Yi ∼ Bin(ni,πi)

where ni = 1, E(Yi) = πi, Var(Yi) = πi(1−πi), and i = 1, . . . ,n.

1.3.1 Link Functions and Their Corresponding Models

A GLM with binary responses and identity link function is called a linear probability model
(LPM) (Agresti, 2013). This model, where πi = xxxTi βββ , allows the probabilities πi to take on
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any value on the real line. The LPM offers a simple interpretation of the covariate effects,
β j, j = 1, . . . ,k, but it is often inappropriate to limit the range of covariate values xxxi so that
0 ≤ πi ≤ 1. Agresti (2013) also stated that the maximum likelihood (ML) estimation of
multiple covariate effects could be adversely affected due to the non-constant variance of y.

Another disadvantage of the LPM is the assumption of a linear relationship between
πi and xxxTi βββ . This assumption implies that a fixed change in xxxi has the same effect on πi

regardless of its initial values, which is unrealistic and counter-intuitive in many settings.
In many cases, the relationship between πi and the linear predictor is better captured by a
sigmoid (S-shaped) curve.

The aforementioned shortcomings of the LPM justify considering non-linear link func-
tions when modelling πi. The most prevalent link functions are summarized in Table 1.1. In
principle, any link function g, where g−1 is monotonically increasing and maps xxxTi βββ to [0,1],
can be used. As mentioned in the previous section, a common choice of g is a function such
that g−1 equals a cumulative distribution function (CDF).

The probit model is a GLM which uses the previously mentioned probit link, where
g(πi) = Φ−1(ηi). The symmetric S-shape of Φ(ηi) lends itself well to describing πi in some
situations. The probit model was originally used to describe binary responses in toxicology
studies, more specifically dose response data resulting from bioassays (Dobson, 2008).

Bliss (1934) suggested transforming the success probability πi into so-called "probits"
using the inverse Normal CDF Φ−1. This method facilitated linear regression despite the
S-shaped relationship between the dosage level of a toxic agent and the proportion killed in a
set of organisms exposed to said dosage (Bliss, 1934). The probit link has later been applied
in a wide range of disciplines, such as social sciences and biological sciences (Dobson,
2008).

Table 1.1 Three common link functions for GLMs with binary responses. The rightmost
column lists their respective mean functions.

Link Tolerance distribution g(πi) = ηi πi = g−1(ηi)

Logit Logistic distribution log
(

πi
1−π1

)
eηi

1+eηi

Probit Normal distribution Φ−1(πi) Φ(ηi)

Complementary log-log Extreme value distribution log [− log(1−πi)] 1− e−eηi
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Another link function which is used when dealing with dose response data and other
dichotomous responses is the complementary log-log link. Fahrmeir et al. (2013) state
that the GLM using this link function, the complementary log-log model, is useful in more
specific applications. The tolerance distribution used for modelling πi is the extreme value
distribution, resulting in the link log [− log(1−πi)] = ηi.

The mean function of the complementary log-log model is asymmetric. In cases where
the true functional form of πi deviates considerably from a sigmoid which is symmetric about
the point where πi = 0.5, the complementary log-log link may be an appropriate choice. The
asymmetric mean function is an important feature which distinguishes this model from the
probit model and the very popular logit model.

The most popular link function for binary responses is the logit link:

g(πi) = log
(

πi

1−πi

)
= logit(πi) = ηi, (1.10)

which is based on the logistic distribution. This link is also referred to as the log odds
transformation. A GLM with a binary random component and the logit link is called a
logistic regression model. The s-shaped mean function, πi = eηi/(1+eηi), is the well-known
standard logistic function — a function which has several useful mathematical properties.

The standard logistic function is symmetric about (0, 1
2), i.e. π(ηi) = 1−π(−ηi), and its

first derivative is π ′(ηi) = π(ηi)(1−π(ηi)). These convenient features is a central reason
for choosing the logistic model when considering GLMs whose link functions are derived
from cumulative distribution functions (Hosmer, 2013).

Another leading reason to favour the logistic regression model is the interpretability of
the covariate effects β0,β1, . . . ,βk. However, when prediction of the response variable is
regarded as more helpful than meaningful parameter estimates, Hosmer (2013) recommends
considering the probit, log-log, or complementary log-log link functions in addition to
logit(πi). These alternative GLMs may produce better estimates of the outcome (or success)
probability, πi, than the logistic regression model. The interpretability of logistic regression
models are covered in the following subsection.

1.3.2 Interpretation of logistic regression models

Assuming that the linear predictor we are dealing is of the usual form ηi = β0 +β1xi1 + . . .+

βkxik, a covariate effect β j, j = 1, . . . ,k, is the change in the log-odds of success caused by a
one-unit increase in the covariate xi j. This is evident when looking at the difference between
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logit(πi) evaluated at xi j +1 and logit(πi) evaluated at xi j.

Consider, for simplicity, the following model with k = 2 covariates:

log
(

π (β0 +β1xi1 +βk (xi2 +1))
1−π (β0 +β1xi1 +βkxi2)

)
− log

(
π (β0 +β1xi1 +βkxi2)

1−π (β0 +β1xi1 +βkxi2)

)
=

β0 +β1xi1 +β2(xi2 +1)−β0 −β1xi1 −β2xi2 = β2.

Hence the former equality may be rewritten:

log
(

π(β0 +β1xi1 +βk(xi2 +1))/[1−π(β0 +β1xi1 +βkxi2)]

π(β0 +β1xi1 +βkxi2)/[1−π(β0 +β1xi1 +βkxi2)]

)
= β2,

and exponentiating both sides results in the following:

π(β0 +β1xi1 +βk(xi2 +1))/[1−π(β0 +β1xi1 +βkxi2)]

π(β0 +β1xi1 +βkxi2)/[1−π(β0 +β1xi1 +βkxi2)]
= eβ2 =⇒

π(β0 +β1xi1 +βk(xi2 +1))
1−π(β0 +β1xi1 +βkxi2)

= eβ2
π(β0 +β1xi1 +βkxi2)

1−π(β0 +β1xi1 +βkxi2)
.

This means that a one-unit increase of the covariate xi j produces a multiplicative change
of the odds of success, where eβ j is the multiplicative change factor. If β j is positive, a
one-unit increase in xi j causes the odds of success to increase; if β j is negative, the one-unit
increase causes the odds of success to decrease. In the case where there is no relationship
between xi j and πi, β j equals zero and the odds of success remains unaffected by increasing
xi j to xi j + 1. Hosmer (2013) has an entire chapter devoted to the interpretation of fitted
logistic models.

1.3.3 Maximum Likelihood Estimation

This section gives a very brief mention of the method of estimation which provides a basis
for a large proportion of binary data analysis methods and processes – maximum likelihood
(ML). It is a large subject area in its own right, and its application to binary regression
models is covered in detail by Agresti (2013) and Hosmer (2013). The maximum likelihood
estimates (MLEs) are the values of the parameters of a statistical model which maximize the
likelihood, or log-likelihood, function of the model.

In this thesis, where the focus is on binary regression models, we have that yi ∼
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Bernoulli(πi) and f (yi)= π
yi
t (1−πi)

1−yi . Hence the joint likelihood function of y1,y2, . . . ,yn

is defined as

L(βββ ;yyy) = f (yyy;βββ ) =
n

∏
i=1

π
yi
t (1−πi)

1−yi , (1.11)

and the log-likelihood function is

ℓ(βββ ;yyy) = log(L(βββ ;yyy)) =
n

∑
i=1

[yi logπi +(1− yi) log(1−π1)] . (1.12)

The MLEs of βββ are the values

β̂ββ =
[
β̂0 β̂1 . . . β̂k

]T
.

which maximize (1.11) and (1.12).

When fitting a logistic regression model, it is possible to evaluate the linear predictors η̂i,
once β̂ββ is estimated. These η̂i are also called sample logits. Finally, we get the estimates of
the probabilities π̂i by evaluating eη̂i/(1+eη̂i) at the sample logits η̂i = xxxTi β̂ββ .



Chapter 2

Goodness-of-Fit Tests and Their
Statistics

In this chapter, we will present the goodness-of-fit tests compared in our simulation studies.
Supplementary information on their implementation in R is presented in Chapter 3.

2.1 The Standardized Pearson Test

The classic Pearson chi-squared statistic is frequently used when a GLM has has less than n
covariate patterns, and is defined as

X2 =
N

∑
i=1

(yi −niπ̂i)
2

niπ̂i(1− π̂i)
, (2.1)

in cases where the data is grouped into N covariate patterns and ni is the number of observa-
tions in each of those subgroups (Hosmer, 2013). This statistic is based on the difference
between the observed response variables and the fitted probabilities of the model in question.

This thesis addresses the case where ni = 1 and i = 1, . . . ,N = n, which is a common
occurrence when at least one covariate is continuous. Hence for the remainder of this text,
the classic Pearson chi-squared statistic equals

X2 =
n

∑
i=1

(yi − π̂i)
2

π̂i(1− π̂i)
. (2.2)

When performing a classic Pearson chi-squared test, the main assumption is that the
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statistic X2 is approximately chi-squared distributed with n− p−1 degrees of freedom when
the null hypothesis (H0) that the model that produced the fitted probabilities π̂i is correctly
specified. As noted by Dobson (2008) and Hosmer (2013), however, this assumption does not
hold when ni = 1. Thus, using this test on ungrouped data will produce incorrect p-values.

A set of approximations of the asymptotic expectation and variance of the classic Pearson
chi-square statistic was introduced by McCullagh (1985). These moments are conditional on
the estimated parameters β̂ββ and their estimates are quite complicated to compute (Hosmer
et al., 1997). A few years later, Osius and Rojek (1992) showed that in the special case of
binary data, the conditional and unconditional moments of X2 are asymptotically equivalent,
and presented a much more painless way of computing the a large sample approximations of
the moments.

Osius and Rojek (1992) stated that when H0 holds, X2 has an asymptotic normal distribu-
tion, and can be standardised such that it approximates the standard Normal distribution. The
estimation of the standardising moments, the expectation and variance of X2, is described in
detail in Hosmer (2013) and Hosmer et al. (1997).

In Hosmer (2013), the estimated mean equals n − k − 1, where k is the number of
covariates and k+1 is the number of parameters. In the Appendix of Hosmer et al. (1997),
on the other hand, the estimator equals n. We will use the Osius and Rojek estimation
method described by Hosmer (2013), which is a more recent publication. In this method, the
estimator of the variance of X2 is the residual sum-of-squares, denoted RSSP, resulting from
the regression of the artificial response ci = (1−2π̂i)/(π̂i(1−π̂i)) on the design matrix XXX with
weights vi = π̂i (1− π̂i). Recall that yi ∼ Bernoulli(πi) and that Var(yi) = πi (1−πi). Hence
the maximum likelihood estimate of the variance of yi is very a influential component of the
standardised Pearson test.

Finally, when the estimates of the standardising moments have been computed, the
standardised Pearson statistic can be evaluated:

X2
st =

X2 − (n− k−1)√
RSSP

, (2.3)

which simply is a standardised version of the classic Pearson chi-squared statistic X2. When
H0 is true, X2

st is approximately N (0,1). It is recommended to obtain the p-value using a
two-tailed test (Osius and Rojek, 1992).

It is worth noting that for small samples, Hosmer et al. (1997) advises using expressions
involving the estimated moments to firstly, scale X2, and secondly, calculating a constant
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denoted τ . Subsequently, the p-value is computed using the chi-square distribution with
τ degrees of freedom. This approach was not chosen due to the prevalence of Osius and
Rojek’s two-tailed z-test in many different R-packages.

2.2 Unweighted Sum of Squares Test

The unweighted sum-of-squares (USS) statistic,

S =
n

∑
i=1

(yi −niπ̂i)
2 =

n

∑
i=1

(yi − π̂i)
2 , (2.4)

was proposed by Copas (1989). Befitting its name, the unweighted sum-of-squares statistic,
does not have a denominator which influences its value as seen in (Section 2.1). The statistic
was later used to test the overall model adequacy of logistic regression models and compared
to other goodness-of-fit statistics by Hosmer et al. (1997).

In this article, the unweighted sum-of-squares test was performed by standardizing S in a
similar manner as in Section 2.1, and subsequently computing the p-value using the standard
normal distribution. Both Hosmer et al. (1997) and Hosmer (2013) state that under H0,

Ŝst =
S− µ̂S

σ̂S

d→ N(0,1), (2.5)

where µ̂S and σ̂2
S are respectively the estimates of the asymptotic expectation and variance of

the USS statistic. We will refer to Ŝst as the standardised USS statistic. Similarly to X2
st, the

p-value of Ŝst is obtained using a two-tailed z-test (Hosmer, 2013).

The estimator of the asymptotic moment µS used when computing Ŝst is defined as

µ̂Ŝ =
n

∑
i=1

π̂i(1− π̂i), (2.6)

according to both aforementioned publications. The larger the estimated variance, the smaller
the the numerator in (2.6). The approach used for estimating the asymptotic variance of the
USS statistic is similar to the one described for the asymptotic variance of X2

st in the previous
section.

The estimation of σ2
S was done by regressing di = 1−2π̂i on the design matrix XXX with

weights vi = π̂i (1− π̂i), i = 1, . . . ,n (Hosmer, 2013). The residual sum-of-squares from that
artificial regression, denoted

√
RSSU, is the estimate of σ̂2

S .
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2.3 Stukel’s Test

A class of models in which asymmetry of the mean function’s curve, or probability curve,
π(ηi), is allowed was introduced by Stukel (1988). This class provides an alternative to the
standard logistic regression model, where πi = π(ηi) = eηi/(1+eηi) and the probability curve
has the symmetry property 1−π(ηi) = π(−ηi) about ηi = 0.

The standard logistic model, where the probability πi is modelled using the logistic
function, comes with several restrictions. Its mean function, π(ηi), has the aforementioned
symmetry property, and first derivative π ′(ηi) = π(ηi)(1−π(ηi)). These restrictions make
the model less suitable for certain types of data whose true probability curves do not have the
same functional form as the logistic function. This may be because the probability curve in
question is asymmetric, has a different first derivative (i.e. steepness), and/or has a different
tolerance distribution than the logistic distribution. However, even when this is the case, the
standard logistic model can serve as a framework for encompassing a wider variety of data,
which is what was done by Stukel (1988).

Stukel (1988) introduced a generalised model which permits a more extensive range of
shapes of probability curves. The standard logistic model was generalized by adding two
additional parameters, ϕ1 and ϕ2, and proposing a new general model form. The general
form of Stukel’s model is

πϕϕϕ(ηi) =
ehϕϕϕ (ηi)

1+ ehϕϕϕ (ηi)
, (2.7)

or, equivalently,

logit(πi) = hϕϕϕ(ηi), (2.8)

where hϕϕϕ are strictly increasing functions defined as follows:

For ηi ≥ 0 ⇔ πi ≥ 1
2 :

hϕϕϕ (ηi) =


1

ϕ1

(
eϕ1|ηi|−1

)
, ϕ1 > 0

ηi, ϕ1 = 0

− 1
ϕ1

log(1−ϕ1|ηi|) , ϕ1 < 0,

(2.9)
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and for ηi ≤ 0 ⇔ πi ≤ 1
2 :

hϕϕϕ (ηi) =


− 1

ϕ2

(
eϕ2|ηi|−1

)
, ϕ2 > 0

ηi, ϕ2 = 0
1

ϕ2
log(1−ϕ2|ηi|) , ϕ2 < 0.

(2.10)

In this framework, the standard logistic model is a special case of Stukel’s generalized model,
occurring when ϕ1 = ϕ2 = 0.

Since ϕ1 and ϕ2 regulate the presence of asymmetry and how heavy the tails are in the
probability curve πϕϕϕ(ηi), it follows that they are shape parameters. When ϕ1 ̸= ϕ2, the curve
is asymmetric, whereas when ϕ1 = ϕ2, it is symmetric. The upper tail is controlled by ϕ1,
and the lower tail is controlled by ϕ2. When examining (2.9) and (2.10), one can see that:

1) when ϕ1 > 0, (2.9) is exponential (with a relatively large positive d
dηi

hϕϕϕ ),

2) when ϕ1 < 0, (2.9) is logarithmic (with a relatively small positive d
dηi

hϕϕϕ ),

3) when ϕ2 > 0, (2.10) is exponential (with a relatively large positive d
dηi

hϕϕϕ ), and

4) when ϕ2 < 0, (2.10) is logarithmic (with a relatively large positive d
dηi

hϕϕϕ ).

It follows that when a shape parameter is positive, it causes the h function controlled by the
parameter to increase much more rapidly. This makes its respective tail shorter, i.e. steeper,
than compared to the standard logistic model. Conversely, when the shape parameter is
negative, its respective tail is longer, i.e. less steep, than compared to the corresponding
tail of the standard logistic model where ϕϕϕ = (0,0). The greater the |ϕ1|, or |ϕ2|, the more
pronounced the effect on the heaviness of the tail.

Stukel (1988) supplied values of ϕϕϕ where the corresponding mean functions πϕϕϕ(ηi)

approximate some well known tolerance distributions. Stukel’s model approximates the
probit model when ϕϕϕ ≈ (0.165,0.165). This means that πϕϕϕ(ηi) approximates the standard
Normal CDF.

When ϕϕϕ ≈ (0.62,−0.037), πϕϕϕ(ηi) is approximately the minimum extreme value distri-
bution’s CDF, which gives us the complementary log-log model. The values approximating
the maximum extreme value distribution (the log-log model) and the standard Laplace distri-
bution are also provided. Hence it is possible to test whether other link functions than the
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logit link are more appropriate when analysing data.

Stukel (1988) advised that the maximum likelihood estimates of the covariate effects βββ

and the shape parameters ϕϕϕ should be computed using an Newton-Raphson-like procedure
called the delta algorithm. This algorithm is described in detail by Jørgensen (1984). The
variance of the estimated ϕ̂ϕϕ

Stukel (1988) stated that one could evaluate the fit of the standard logistic model by
testing whether ϕϕϕ = (0,0) using a score test. The score test of the null hypothesis that ϕ1

and ϕ2 are equal to 0 (or other specific values) can be calculated using statistical software
where the specified model is defined as

logit(πi) = ηi +ϕ1z1,i +ϕ2z2,i , where (2.11)

z1,i =
1
2

η̂
2
i I(η̂i ≥ 0) , and (2.12)

z2,i =−1
2

η̂
2
i I(η̂i < 0),i = 1, . . . ,n. (2.13)

Evaluating how well a specified standard logistic model fits the data can be done by
using score tests. Stukel (1988) provides equations for the the score vector, the asymptotic
mean and variance-covariance matrix, and their asymptotic chi-squared distribution under
H0 : ϕϕϕ = (0,0). The score statistic, evaluated at ϕϕϕ = (0,0) and the maximum likelihood
estimates fitted under the standard logistic regression, has an asymptotic χ2(2) distribution.

In this thesis, the aforementioned score test is referred to as Stukel’s score test. Stukel
(1988) also recommended performing a likelihood ratio test (LRT). One may use a likelihood
ratio test (LRT) to compare the nested models logit(πi) = ηi and logit(πi) = ηi +ϕ1z1,i +

ϕ2z2,i (Hosmer, 2013). In the following chapters, this LRT is referred to as Stukel’s LRT. The
computation of the p-values, and the introduction of a modified version of Stukel’s LRT, is
covered in Chapter 3.

For large sample sizes, score tests are asymptotically equivalent to likelihood ratio tests
(LRTs) i terms of distribution when H0 is true (Yan, 2009). It is therefore possible that
Stukel’s score test and LRT perform similarly for very large n.

2.4 The Information Matrix Test

The information matrix test (IMT) was proposed by White (1982) as a test for model
misspecification when applying maximum likelihood estimation techniques. It is based
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on a theorem stating that the Hessian form and the outer product form of the information
matrix (denoted respectively by −A(βββ ) and B(βββ )) are equivalent when the model is correctly
specified. Specifically, for element (i, j) in these matrices, we have that

{−A(βββ )}i, j :=−E
{

∂ 2ℓ(βββ ;Yt)

∂βi∂β j

}
= E

{
∂ℓ(βββ ;Yt)

∂βi
· ∂ℓ(βββ ;Yt)

∂β j

)
=: {B(βββ )}i, j (2.14)

where ℓ(βββ ;Yt) = log f (Yt ;βββ ), i, j = 1,2, . . . , p, and the expectations are taken with respect to
the true probability density (or mass) function, f . The model is misspecified if this equality
fails to hold, i.e. when A(βββ )+B(βββ ) does not equal the p× p null matrix 000p×p (White, 1982).
The main focus of this thesis is when Yt ∼ Bernoulli(πt) and the logit link is used. Hence
f (yi) = π

yt
t (1−πi)

1−yt in our case.

White (1982) specified the following matrices

{An(YYY ;βββ )}i, j =
1
n

n

∑
t=1

∂ 2ℓ(βββ ;Yt)

∂βi∂β j
, (2.15)

{Bn(YYY ;βββ )}i, j =
1
n

n

∑
t=1

∂ℓ(βββ ;Yt)

∂βi
· ∂ℓ(βββ ;Yt)

∂β j
, i, j = 1,2, . . . , p, (2.16)

and used An(yyy; β̂ββ )+Bn(yyy; β̂ββ ) as a gauge of model misspecification (yyy is the n×1 vector of
observations of YYY ). A test statistic for the IMT was obtained by looking at the asymptotic
distribution of the elements of

√
n(An(yyy; β̂ββ )+Bn(yyy; β̂ββ )).

Due to the fact that An(YYY ;βββ )+Bn(YYY ;βββ ) is symmetric, at least p2 − p(p+ 1)/2 of its
elements are superfluous and unnecessary to consider. The q ≤ p(p+1)/2 non-redundant
elements, referred to as "indicators of interest", are placed in a q× 1 vector denoted by
Dn(YYY ;βββ ). This vector of indicators is defined as

Dn(YYY ;βββ ) =
1
n

n

∑
t=1

d(Yt ,βββ ), (2.17)

where d(Yt ,βββ ) is a q×1 vector with typical element

dr(Yt ,βββ ) =
∂ 2ℓ(βββ ;Yt)

∂βi∂β j
+

∂ℓ(βββ ;Yt)

∂βi
· ∂ℓ(βββ ;Yt)

∂β j
(2.18)

for rows r = 1, . . . ,q, and i = 1, . . . , p, j = i, . . . , p (unless q < p(p+ 1)/2, in which case
some subset of (i, j) is omitted).
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If the model is specified correctly, then

√
n Dn(YYY ; β̂ββ )

A∼ MVN
(
000q,V (βββ )

)
, (2.19)

where MVN
(
000q,V (βββ )

)
is the multivariate Normal distribution with mean vector 000q and

asymptotic variance-covariance V (βββ ) (White, 1982). The mean vector is the q× 1 null
vector, i.e. it has q components, each of which is 0. The asymptotic covariance matrix is
defined by

V (βββ ) = E
{

w(Yt ;βββ )w(Yt ;βββ )T
}
, (2.20)

where w(Yt ;βββ ) is a q×1 vector defined by

w(Yt ;βββ ) = d(Yt ,βββ ) − ∇D(βββ )A(βββ )−1
∇ℓ(βββ ;Yt)

T (2.21)

and

∇D(βββ ) = E
{

∂d(Yt ,βββ )

∂βi

}
, (2.22)

(2.23)

∇ℓ(βββ ;Yt) =

{
∂ℓ(βββ ;Yt)

∂βi

}
, (2.24)

are, respectively, the q× p and 1× p Jacobian matrices with i = 1, . . . , p.

Given the assumptions listed in White (1982) and any consistent estimator for V (βββ ),
denoted by V̂n(β̂ββ ), the information matrix test statistic

In = nDn(YYY ; β̂ββ )TV̂n(β̂ββ )
−1Dn(YYY ; β̂ββ ) (2.25)

has an asymptotic χ2(q) distribution when the model is correctly specified (under H0). The
null hypothesis that the model is correctly specified is rejected when one computes In and it
exceeds the critical value of the χ2(q) distribution for a given significance level.

Several covariance matrix estimators have been proposed. White (1982) suggested
a consistent estimator involving the Jacobian matrix of Dn(YYY ; β̂ββ ), which involves third
derivatives of the log-likelihood functions of the random variables Yt . Dealing with analytical
third derivatives can make White’s test statistic inconvenient to compute, as noted by White
(1982) and Orme (1990).

Orme (1988) used an asymptotically efficient maximum likelihood estimator of V (βββ ) (as
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recommended by Davidson and Mackinnon (1984)) and presented a calculation procedure
for IMT statistics specific to binary data models. This is the procedure used to perform the
IMT in this thesis. Here follows a condensed outline of Orme’s calculation procedure for
two IMT statistics under the logistic regression model.

The ML estimator is obtained by replacing βββ by the MLEs β̂ββ in the expression produced
by calculating V (βββ ) under the null hypothesis. When this particular estimator is plugged in
(2.25), the resulting IMT statistic is the explained sum-of-squares from a specific artificial
linear regression with no intercept term. In the special case of the logistic regression model,
r̂rr is regressed on WWW ∗ = (XXX∗,ZZZ∗), where r̂rr is a n×1 vector with typical element

r̂i =
yi − π̂i√
π̂i(1− π̂i)

, i = 1,2, . . . ,n, (2.26)

XXX∗ is a n× p matrix with rows√
π̂i(1− π̂i) xxxTi , i = 1,2, . . . ,n, (2.27)

and ZZZ∗ is a n× p(p+1)/2 matrix with rows√
π̂i(1− π̂i) (1−2π̂i)zzzTi , i = 1,2, . . . ,n, (2.28)

where zzzi = vech(xxxixxxTi ), is the half-vectorization of the symmetric matrix xxxixxxTi .

The explained sum-of-squares from the above regression gives us the statistic we will
refer to as the IMT1 statistic. In addition, an alternative statistic can be obtained by dividing
IMT 1 by r̂rrTr̂rr/n. This statistic is referred to as the IMT2 statistic. The IMT 1 and IMT 2 are
asymptotically equivalent, and under H0 their asymptotic distribution is χ2 (k(k+1)/2).





Chapter 3

Significance Level Study

Two simulation studies were carried out in an effort to better understand how the overall
goodness-of-fit (GOF) tests perform in different scenarios. In statistics, the methods with
well established properties are the ones we trust the most when modelling real life data.
However, these properties are often not feasible (or indeed possible) to determine analytically,
and analytical results may necessitate assumptions which are usually violated in practice.
The following study was the first of two simulations studies to be carried out, and in an effort
to estimate the empirical significance levels of the GOF statistics.

The sampling distribution of a GOF test statistic, for example, is needed in order to
determine whether the significance level of the test is equal to the nominal significance level,
denoted by α . Likewise when trying to answer what power the test has when testing the
null hypothesis H0 of model adequacy. We use simulations studies to approximate the true
sampling distribution of the GOF test statistics under a variety of conditions, such as sample
size and form of linear predictor. By doing this we gain a better understanding of how the
GOF tests behave in terms of significance level and power in predetermined situations.

In this chapter, we examine test performance when the correct logistic model had been
fitted, and later in Chapter 4 we will cover the tests’ ability to recognise when the fitted
logistic model is incorrect (i.e. the power of the global GOF tests). Both studies were
structured in a similar manner to the simulations in Hosmer et al. (1997) and employed
some of the same covariate distributions and models. Hosmer and Hjort (2002) also used a
similar set-up. The configurations of covariate distributions and logistic models from Hosmer
et al. (1997) produce a wide variety of distributions of πi-s, hence there was no apparent
reason to refrain from using them. Three additional set-ups were added in order to include
situations where the true probabilities πi were highly left skewed, moderately left skewed
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and moderately right skewed.

In all our simulations, the performance of the test were evaluated based on R = 1000
replications. Each situation, or model, was investigated at the α = 0.05 significance level
with these three different sample sizes: n = 100, n = 500 and n = 1000. Hosmer et al.
(1997) used 500 replications so there was an initial expectation that our results would not be
identical, even in the parts where the study design is the same. Samples of size n = 1000
were not considered by Hosmer et al. (1997), but were included in these two studies due to
the prevalence of data sets where n ≥ 1000 and since the added computational burden was
minimal. All of the simulations and computation were implemented in R.

This chapter also presents an exploration of a possibly new method. First it is posited
that the euclidean distances between the estimated logistic probabilities and the observed
response variable may be modelled by the Weibull distribution.

Then the possibility of

Then this was incorporated into a possible

development of a method where

the early stages of

3.1 The Goodness-of-Fit Statistics and Their Implementa-
tion

The overall GOF tests used in both the significance level study and the power study were:

1) the standardised Pearson test,

2) the unweighted sum-of-squares (USS) test,

3) Stukel’s score test,

4) Stukel’s likelihood ratio test (LRT), and

5) the information matrix test (IMT).

Two different Stukel’s LRT statistics were included in the study, and the two different IMT
statistics mentioned in Section 2.4 also. The remaining three tests had one statistic each.

The standardised Pearson chi-square statistic, X2
st, was obtained by performing artificial

regression to estimate the Osius and Rojek large sample normal approximation as described
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by Hosmer (2013). This choice of this standardisation method is due to its availability
and ease of computation, even though Hosmer et al. (1997) stated that using estimates of
McCullagh’s moments, and scaling the statistic using a chi-square distribution, lead to better
small sample performance.

The R function used to compute X2
st was adapted from a function provided on the website

accompanying the textbook by Bilder and Loughin (2014). The estimated mean in the
function was changed to n minus the number of parameters in the model. Similarly to X2

st,
the standardised USS statistic Ŝst was also computed using artificial regression as outlined by
Hosmer (2013) (see Section 2.1). The R function producing the p-value of the USS test was
written specifically for this study.

Stukel’s score test statistics and p-values were computed by the R function stukel()

from the logisticDx package. The function follows the score test procedure described by
Stukel (1988). The estimated variance-covariance matrix produced was singular in some
instances. This occurred in cases where almost all of the n fitted values π̂i were either greater
than or less than 0.5, and caused the computation of the statistic and its p-value to fail. This
was also the case in many circumstances where all of the π̂i were either greater than or less
than 0.5 (or, equivalently, all the η̂i were either positive or negative).

The study reports the results from some of the situations where replications failed to
produce a p-value. If the percentage of failed replications in a particular situation was less
than or equal to 25%, the result based on the successful replications was included and marked
with an asterisk in its respective table. However, if more than 25% of the 1000 replications
failed, the result were not included.

Stukel’s LRT was implemented by using the anova() function to compare two nested
models, logit(πi) = ηi and logit(πi) = ηi+ϕ1z1,i+ϕ2z2,i, which were fitted using the glm()
function in R. Hence errors caused by trying to invert singular matrices were avoided. The
resulting statistic is referred to as Stukel’s LRT1.

Examination of a few test simulations revealed that the number of observations such that
z1,i ̸= 0 was very low in some situations (less than 5 out of 500 observations in some example
cases). Similarly, there were very few observations such that z2,i ̸= 0 in other examples. In
these cases, the glm() function often returns NA as the estimated coefficient of the variable
with very few non-zero values. As a result, the subsequent LRT involves comparing the null
(logit) model with the generalized Stukel model where the variable with the NA coefficient
is excluded, i.e. only one of the shape parameters is included in the more complex Stukel
generalization.
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A modified version of the algorithm computing Stukel’s LRT statistic, referred to as
Stukel’s LRT2, was introduced. This was motivated by the question of whether the estimation
of the shape parameter could be adversely affected if the number of observations where
the corresponding variable was non-zero, was barely high enough to avoid Na coefficients,
but still relatively low. A constraint requiring a minimum percentage of non-zero observed
values of z1,i and z2,i was introduced.

It was decided that if less than 10% of the η̂i resulted in non-zero z1,i then z1 would
be excluded from the alternative model and anova() would compare the null model to
logit(πi) = ηi +ϕ2z2,i. Similarly, if less than 10% of the η̂i resulted in non-zero z2,i then z2

was not included and the alternative model used was logit(πi) = ηi +ϕ1z1,i. The statistic
produced by this alternative version will be referred to as Stukel’s LRT 2 statistic. Different
constraints on the number or relative percentage of non-zero z1,i and z2,i was of interest to
investigate, but not feasible due to time constraints.

When only one additional variable was included in the alternative model, the anova()
function produced a p-value using the χ2(1) distribution. When both variables were added
in the alternative model, the anova() used the χ2(2) distribution.

As mentioned in Section 2.4, there are two asymptotically equivalent versions of the IMT
statistic available. These were both included in the simulation studies. At the time leading
up to the simulations, the IMT was not found in any readily available R-packages. The R

function computing the IMT 1 and IMT 2 statistics were therefore developed in accordance
with the estimation procedure for logit models presented in Orme (1988) specifically for this
study.

3.2 A Weibull-based behaviour indicator

An attempt was made to lay the foundation for a method with which one could predict a
GOF test’s performance in terms of rejection region, or significance level, possibly with
an accompanying visual indication. To be able to assess your fitted model with a tool that
provided a visualisation of discrepancy between the observed values of yi and the sample
logits η̂i, and additionally provided an indication of how specific GOF tests will behave in
this setting, could be useful.

The two-parameter Weibull distribution was used as a model for the euclidean distance
between yi and π̂i, i = 1, . . . ,n. The significance level study simulations served as an explo-
rative vehicle to study the behaviour of the Weibull distributions fitted to the aforementioned
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euclidean distances. There was an anticipation that certain patterns of fitted parameters could
potentially offer a new procedure for gauging a GOF test statistic’s performance.

For each observation i = 1, . . . ,n, let di denote the euclidean distance between the ob-
served response variables and the fitted logistic probabilities, given by

di =
√

(yi − π̂i)2 =
∣∣yi − π̂i)

2∣∣ . (3.1)

During early stages of the study, simulated examples of such di where plotted as histograms
and found to be similar in shape to a Weibull probability density function (PDF). An example
of this is shown in Figure 3.1.

There are several ways one can check whether the Weibull distribution is a reasonable
distribution for the distances di. One way of assessing whether a distribution is appropriate is
by inspecting a Weibull probability plot as described in Devore and Berk (2012). Figure 3.2
contains an example of such a plot. This assessment of the plausibility of the Weibull
distribution is not rigorous, and was not intended to be so due to the exploratory nature of
this part of the thesis.

We hypothesized that di ∼ Weibull(a,b), where a > 0 and b > 0 are the shape and
scale parameter, respectively. Different values of these two parameters can be combined to
produce a variety of different distributional shapes (Devore and Berk, 2012). Because of
this versatility, the Weibull distribution may be a viable alternative for modelling di. A more
comprehensive description of the Weibull distribution can be found in Lai (2013).
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Fig. 3.1 A histogram of di based on a simulated example of a fitted logistic regression model,
accompanied the PDFs of the Weibull, lognormal, and gamma distributions fitted to di,
i = 1, . . . ,n.
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Fig. 3.2 Weibull probability plot

Therefore, in addition to the GOF statistics mentioned in section 3.1, estimates of the
two parameters of the Weibull distribution were also computed during the simulations. The
manner in which they were implemented and studied is described in sections 3.5.

3.3 Significance Level Study

It is useful to know how the tests behave when the fitted logit model is correct. In this chapter,
the null hypothesis H0 refers to the statement that a the logit model one has specified is
correct. Ideally, a particular test should reject the true null hypothesis 100×α% of the time. In
other words, a tests’ probability of making a type I error is supposed to equal the significance
level α . If this is the case for many different situations, one can assume that the test statistic
is typically neither too conservative nor too anti-conservative (i.e. having a unjustifiably
large rejection region). Therefore, it is promising if the GOF statistics’ empirical significance
levels, i.e. the mean rejection rate of the true H0, were to be approximately equal to α . The
empirical significance level of a GOF test, denoted by α̂ , was approximated by the rate of
replications where the GOF test statistic incorrectly rejected H0.

As previously stated, some of the situations (the choice of covariates, their distributions
and coefficient values) coincide with the ones used by Hosmer et al. (1997) to compose the
null hypotheses. One difference, however, is that this study added situations which produce
negatively skewed distributions of the true probabilities πi. Hosmer et al. (1997) had 9
different situations whereas this study included 12. They are indexed by s = 1,2, . . . ,12 and
summarised in Table 3.1.
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(a) The distributions of πi resulting from using situations 1-12 to generate observations of
the covariate(s) and response variable yi computing from a simulated observations example
where n = 500.
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πî

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Situation 3

πî
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(b) The distributions of π̂ππ j ( j = 1, . . . ,5) from simulated example data sets where n = 500.

Fig. 3.3 The respective distributions of πi and π̂i, i = 1, . . . ,n, produced by the logistic models
in situations 1-12 with simulated example data sets where n = 500.
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The true models corresponding to the 12 situations are all logistic regression models.
In situations 1-7, there is one single covariate, while the remaining situations have either
two or three covariates. Table 3.1 lists the distribution of the covariate(s) and the true model
coefficients for each situation s. The table also includes a summary of the true logistic
probabilities πππs, where

πππs = [πs1 πs2 ... πsn]
T , (3.2)

are computed using the mean function πsi = π(ηsi) = eηsi/(1+eηsi) and n = 500 generated
observations of the covariate(s) with the covariate distribution(s) listed in Table 3.1. The
summary is comprised of the smallest value of πsi, the first, second and third quartiles, and
the largest value of πi, denoted π(1), Q1, Q2, Q3 and π(n), respectively. The histograms in
Figure 3.3a show the distributions of these 12 sets of πsi.

In this significance level study, R = 1000 sets of πππs are computed directly from R
generated data set of sample size n for every situation s, in the same way as described above.
These πππs are used as a parameter of the rbinom() function to generate corresponding sets
of response variables yyys = [ys1 ys2 . . . ysn]

T. Correctly specified models are subsequently
fitted to their respective data sets consisting of the simulated observations of their covariate(s)
and the corresponding yyys. The GOF test statistics are applied to the resulting fitted π̂ππs =

[π̂s1 π̂s2 ... π̂sn]
T, and the observed response variables yyys.

Figure 3.3b presents histograms which show the distributions of the estimated prob-
abilities π̂si, for each of the 12 situations included in this simulation study, for the same

Table 3.1 Situations used to examine the test statistics’ rate of true null hypothesis rejection

Situation Covariate distribution Logistic coefficients Distributional characteristics of the logistic
probabilities πi (n = 500)

π(1) Q1 Q2 Q3 π(n)

1 U(−6,6) β0 = 0, β1 = 0.8 0.008 0.085 0.516 0.913 0.992
2 U(−4.5,4.5) β0 = 0, β1 = 0.8 0.027 0.144 0.512 0.853 0.973
3 U(−3,3) β0 = 0, β1 = 0.8 0.083 0.234 0.508 0.764 0.916
4 U(−1,1) β0 = 0, β1 = 0.8 0.310 0.402 0.503 0.597 0.690
5 N (0,1.5) β0 = 0, β1 = 0.8 0.034 0.322 0.523 0.699 0.970
6 χ2(4) β0 =−3.2, β1 = 0.42 0.040 0.147 0.372 0.756 1.000
7 30×Beta(18,2) β0 =−12, β1 = 0.5 0.119 0.720 0.849 0.905 0.950
8 3 Independent U(−6,6) β0 = 0, β1 = β2 = β3 = 0.8/3 0.028 0.261 0.554 0.773 0.974
9 3 Independent N (0,1.5) β0 = 0, β1 = β2 = β3 = 0.8/3 0.136 0.393 0.503 0.620 0.884

10 Independent χ2(4) and
30×Beta(18,2)

β0 =−8, β1 = 0.42/2, β2 = 0.5/2 0.061 0.313 0.395 0.502 0.881

11 Independent U(−6,6),
N (0,1.5) and χ2(4) β0 =−1.3, β1 = β2 = 0.8/3, β3 = 0.42/3 0.037 0.175 0.325 0.528 0.845

12 Independent U(−6,6),
N (0,1.5) and 30×Beta(18,2) β0 = 0, β1 = β2 = 0.8/3, β3 = 0.19 0.047 0.529 0.707 0.854 0.974
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n = 500 data set used to produce the true probabilities in Figure 3.3a. These histograms give
a general impression of how the fitted probabilities are distributed for the settings in the 12
different situations. There are slight variations in these distribution for different samples of
the covariate(s) and for the different sample sizes, but Figure 3.3 still provides a very useful
overview.

3.4 The results of the significance level study

The percentage of times each of the seven statistics rejected the true null hypotheses are listed
in Table 3.2. Row s contains entries equal to α̂s ×100, where α̂s is the computed empirical
significance level of a particular test statistic in situation s.

The six entries marked with an asterisk are cases where some of the computations of
Stukel’s score statistic failed due to singularity of the estimated variance-covariance matrix.
In situations 4 and 7, the percentage of failed replications was 4.3% and 2.5%, respectively.
In the remaining four cases, only 0.3% or less of the replications were unsuccessful in
producing a p-value. The six resulting α̂s are based on only marginally smaller sets of
simulated observations than the remaining entries in Table 3.2, so they are still useful.
Nevertheless, this difference should be taken into account when comparing Stukel’s score
test to the other tests.

The standardised Pearson chi-square statistic, X2
st, and the standardised USS statistic,

Ŝst, performed similarly in settings where the logistic probabilities were approximately
symmetrically distributed with mostly small and large πi’s (in situations 1 and 2 where the
covariates have the U(−6,6) and U(−4.5,4.5) distribution, respectively). In cases where
the situations produced πi which were mostly clustered around 0.5, however, X2

st had very
high rejection rates. A less than ideal performance was expected for small sample sizes, but
in situation 4, over 90% of the true null hypotheses were rejected for all three sample sizes.
The USS test was much more stable overall than the standardised Pearson test.

It is noteworthy that among the seven statistics included in this study, X2
st results in both

the lowest α̂ and the highest α̂ for sample sizes n = 500 and n = 1000. There appears to be
little reason to choose the standardised Pearson test over the USS test with regards to type
I errors. When comparing Ŝst with the other five statistics, however, the choice is not that
obvious.

The USS test had the strongest tendency to produce small rejection regions, i.e. reject
the true H0 less often than desired. Compared to the three Stukel’s test statistics, IMT 1, and
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IMT 2, Ŝst yielded more negative α̂s’s which were of a considerable magnitude (|α̂s −α| ≥
0.5) and also had the highest frequency of negative α̂s. This frequency, and the magnitudes,
appear to decrease as n gets larger.

Stukel’s score test outperformed Stukel’s LRT1 and LRT2 in most situations. When
n = 100, the score statistic had rejection rates that were considerably closer to 5% than the
LRT1 and LRT2 statistics in 10 of the 12 situations. In situation 4, the LRT2 statistic had the
same α̂ , whereas in situation 7, LRT2 performed slightly better. These are the two situations
which had the highest rate of failed replications that were mentioned earlier in this section.
In the other situations where computation failed, Stukel’s score test was so much better than
the likelihood ratio based statistics that it is unlikely that the smaller bases for estimating α̂6,
α̂10, α̂11, and α̂12 had any critical influence in this case. However, as sample size increased,
the difference between the score test and the LRTs became smaller.

Compared to the IMT 1 and IMT 2 statistics, Stukel’s score test does better in most
situations when n = 100 and when n = 500. Among these three tests when n = 1000,
however, the IMT 1 has the most α̂s which are closer to α , though only by a small margin.
Furthermore, the IMT 2 generated α̂s with markedly better proximities to α than Stukel’s
score statistic when n = 1000.

For all three sample sizes, Stukel’s score test was better than the standardised Pearson test
in a large proportion of the 12 situations. The USS test had a more comparable performance.
When n = 100 it achieved fairly similar proximities to α , whereas it had more situations
where its α̂s was closer to α than Stukel’s score test when n = 500. The opposite was true
when n = 1000; Stukel’s score test was better in a larger number of situations than the USS
test.

Stukel’s LRT1 and LRT2 statistics had identical results in six of the situations. In the
situations 4, 10, 11, and 12, the difference in α̂s is very small and only present when n = 100.
The LRT1 and LRT2 statistics do, however, perform very differently in situations 6 and 7.
Recall from Figure 3.3a, that these are the situations that produce the two most highly skewed
distributions of π̂i.

In situation 6, where the distribution of πi is highly right skewed, LRT1 resulted in

α̂6 −α = 3.4, when n = 100.

The corresponding result for LRT2 is 1.6, i.e. the difference between LRT2’s α̂6 and α is
less than 1/2 of difference between LRT1’s α̂s and α . When n = 500, the statistics perform
equally well, and this is also roughly the case when n = 1000.
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In situation 7, where the distribution of πi is highly left skewed, LRT1 resulted in

α̂7 −α = 2.5, when n = 100, and

α̂7 −α = 2.4, when n = 1000.

The equivalent differences for the LRT2 statistics are respectively 0.5 and 0.4, i.e. they are
1/5 or less than their LRT1 counterparts. When n = 500, however, the two statistics reject
H0 at the same rate in this study.

When comparing the information matrix test statistics to each other, it appears that they
perform the most unequally for small sample sizes, and that their results converge as n gets
larger. This is consistent with the fact that IMT 1 and IMT 2 are asymptotically equivalent.
If one compares the statistics’ α̂s’s for each s = 1,2, . . . ,12, it becomes apparent that IMT 1
performs better in slightly more situations than IMT 2 when n = 100. In contrast, the results
show that IMT 2 comes closer to a empirical significance level of 5% more frequently than
IMT 1 when n = 500 and n = 1000.

3.5 Study of the Weibull-based behaviour indicator applied
to simulation data

In the previous section, we presented how our seven GOF statistics performed for each
situation s from Table 3.1, s = 1, . . . ,12. During the R = 1000 replications, where we
computed the p-values of the GOF statistics, we also calculated the distances di,s, i = 1, . . . ,n,
and subsequently fitted a Weibull distribution to di,s. First the maximum likelihood (ML)
estimated parameters were computed by the fitdist() function. Values of π̂i which were
less than 1×10−8 and greater than 1−1×10−8 were excluded in order to ensure successful
computation

The estimates where then saved in a R×2 table. Finally, each column of this table was
averaged and resulted in the two empirical shape and scale parameters, denoted âs and b̂s

respectively. The resulting âaa = [â1 â2 ... â12]
T and b̂bb =

[
b̂1 b̂2 ... b̂12

]T
are summarized

in Table 3.3. For each n-value there are 12 fitted Weibull distributions corresponding to the
12 situations listed in in Table 3.1.

In addition to looking at âaa and b̂bb, we were also interested in what the 12 fitted Weibull
PDFs look like. How asymmetric are they? Which values are they centred around, and how
are they dispersed? Plotting the PDFs for n = 1000 in Figure 3.4 gives us a visual impression
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Table 3.3 The shape and scale parameters of the fitted Weibull distributions

Shape parameter, âs Scale parameter, b̂s

n = 100 n = 500 n = 1000 n = 100 n = 500 n = 1000

Situation 1 0.78584 0.79323 0.79630 0.17334 0.17740 0.17841
Situation 2 1.05705 1.05560 1.06238 0.26188 0.26654 0.26871
Situation 3 1.60394 1.59228 1.59393 0.37921 0.38714 0.38836
Situation 4 5.26034 4.88266 4.85821 0.50969 0.51703 0.51789
Situation 5 1.92510 1.94289 1.94553 0.42338 0.43546 0.43703
Situation 6 1.14757 1.13990 1.14204 0.27301 0.27660 0.27799
Situation 7 1.21477 1.22247 1.22730 0.29087 0.29970 0.30174
Situation 8 1.36765 1.42546 1.42028 0.34867 0.36818 0.36852
Situation 9 3.02649 3.27066 3.32633 0.48199 0.49883 0.50118
Situation 10 2.59270 2.65876 2.68150 0.46621 0.48010 0.48233
Situation 11 1.65364 1.72877 1.73836 0.39196 0.41126 0.41378
Situation 12 1.53588 1.59353 1.59848 0.37450 0.39323 0.39517

Table 3.4 Parameters and measures of the fitted Weibull distributions, n = 1000

Shape parameter, Scale parameter, Mode, Median, Mean, Standard deviation, Skewness,
âs b̂s Mos Mds µs σs γ1,s

Situation 1 0.7963 0.1784 0.0000 0.1126 0.2028 0.2569 2.8353
Situation 2 1.0624 0.2687 0.0186 0.1903 0.2624 0.2471 1.8267
Situation 3 1.5939 0.3884 0.2091 0.3086 0.3483 0.2237 0.9682
Situation 4 4.8582 0.5179 0.4939 0.4803 0.4747 0.1116 -0.2340
Situation 5 1.9455 0.4370 0.3016 0.3620 0.3875 0.2077 0.6685
Situation 6 1.1420 0.2780 0.0448 0.2017 0.2651 0.2327 1.6391
Situation 7 1.2273 0.3017 0.0764 0.2238 0.2822 0.2312 1.4701
Situation 8 1.4203 0.3685 0.1564 0.2847 0.3351 0.2393 1.1713
Situation 9 3.3263 0.5012 0.4501 0.4489 0.4497 0.1490 0.0707
Situation 10 2.6815 0.4823 0.4053 0.4207 0.4288 0.1723 0.2824
Situation 11 1.7384 0.4138 0.2528 0.3351 0.3687 0.2187 0.8308
Situation 12 1.5985 0.3952 0.2137 0.3142 0.3543 0.2269 0.9635
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Fig. 3.4 The PDFs of the Weibull(âs, b̂s) distributions ( n = 1000) accompanied by their own
illustrative example histogram of di (resulting from 12 generated data examples adhering to
the set-ups in Table 3.1)
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of the centre measures and dispersion, and thus how the di,s’s are distributed. The values of
such measures are also useful and are included in Table 3.4. Each row in Table 3.4 shows
the âs and b̂s belonging to situation s when n = 1000, along with the mode, median, mean,
variance, standard deviation and skewness of the Weibull(âs, b̂s) distribution.These measures
are denoted Mos, Mds, µs, σ2

s , σs and γ1 respectively.

The formulas for the expectation and variance of a random variable, say T , with the
two-parameter Weibull(âs, b̂s) distribution are

µs = E (T ) = b̂sΓ

(
1+

1
âs

)
, and (3.3)

σ
2
s = Var (T ) = b̂2

s

{
Γ

(
1+

2
âs

)
−
[

Γ

(
1+

1
âs

)]2
}

, (3.4)

(Devore and Berk, 2012). The mode and median of the same distribution are defined as

Mos = b̂s

(
âs −1

âs

) 1
âs

, for âs > 1 (0 otherwise), and (3.5)

Mds = b̂s (log2)
1
âs , (3.6)

according to Lai (2013).

A distribution’s lack of symmetry is often measured by its skewness. The chosen skewness
measure in this text is the standardised third central moment and denoted by γ1. A random
variable T which is Weibull(âs, b̂s) distributed has the following skewness:

γ1,s = E

[(
T −µs

σs

)3
]
=

E
[
(T −µs)

3]
(σ2

s )
3/2

(3.7)

=
Γ (1+ 3

âs
)−3Γ (1+ 2

âs
)Γ (1+ 1

âs
)+2

[
Γ (1+ 1

âs
)
]3

(
Γ (1+ 2

âs
)−

[
Γ (1+ 1

âs
)
]2
)3/2

, (3.8)

(McCool, 2012). The larger the γ1,s, the larger the degree to which the distribution strays
from symmetry.

So now we have a visual representation of the Weibull PDFs and a summary where âs

and b̂s are accompanied by their corresponding µs, σs , etc. We wish to study if one can
predict how the GOF test statistics will perform based on this information. After inspecting
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the graphs of the Weibull PDFs in Figure 3.4, one can argue that they come in three main
categories with regards to skewness: (1) close to symmetric distributions; (2) moderately
right skewed distributions; and (3) highly right skewed distributions. There might, however,
be potentially informative groupings of the distributions that are harder to spot. For this
reason, principal component analyses (PCA) were carried out.

3.5.1 Principal Component Analysis

The principal component analyses were performed with the prcomp() function following
the recommendations of James et al. (2013). In order to emphasize whether a GOF test
statistic performs conservatively, anti-conservatively, or as desired, the following variable
was introduced:

∆s = (α̂s −α)×100, (3.9)

where α̂s is the empirical significance level of a GOF test statistic when n = 1000 in situation
s, s = 1,2, . . . ,12. Negative ∆s of substantial magnitude indicate that the GOF test statistic in
question is conservative.

Conversely, considerably large positive values mean that the statistic is too intolerant or
anti-conservative. There appears to be no well-established standard by which to interpret the
distance between α̂s and the chosen significance level α . Nevertheless, in this text, the GOF
test statistic will be regarded as having an acceptable rejection region if |∆s| ≤ 0.5.

For each GOF test, a dataset was formed by merging the observed values of ∆s and the
columns of Table 3.4. Seven PCAs were carried out using seven 12×10 data matrices in R,
and the first two principal components (PCs) were used to produce a loading vector plot (also
called loading plot). A biplot in PCA can reveal clustering of observations. and correlations
of the variables of a dataset (Gabriel, 1971). A loading plot is essentially a biplot, but without
the visualization of the PC scores that describe the observations. In our case, the observations
are the 12 different situations, and the variables are ∆s, âs, b̂s, Mos, Mds, µs, σ2

s , σs and γ1,s.
Loading plots were used instead of biplots since the initial focus was on uncovering possible
correlations between the GOF tests’ ∆s and the variables.

The PCA loading vector plot provides us with a visual overview of the variables listed in
Table 3.4 and the variable ∆s which expresses how close α̂s of a specific test is to α . It does
not, however, determine the true values of the correlation coefficients between the variables
included in the PCA or give us an explicit answer to whether the Weibull(âs, b̂s) distributions’
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parameters, and its measures of dispersion and central tendencies, can be used to predict how
a particular test performs in a particular type of situation s. A loading plot is merely a useful
tool for extracting the most prominent or interesting relationships between variables from a
data structure.

Figure 3.5 contains one loading plot for each GOF test statistic where the first two
principal components of the PCA have been plotted. According to Gabriel (1971), the cosine
of the angle between two vectors pertaining to two variables/columns of a data set is an
approximation of the correlation coefficient of those two variables.

In the following text, the variables b̂s, Mos, Mds, and µs will be referred to as the
percentile-related variables. The scale parameter b̂s approximates the 63.2th percentile of
the fitted Weibull(âs, b̂s) distribution, the median Mds equals the 50th percentile and Mos and
µs equal percentiles not far from the median.

The Standardised Pearson Test

The standardised Pearson test’s performance, ∆s, has the strongest positive correlation
with the shape parameter. The test is also positively correlated with the percentile-related
parameters ( Mos, µs, b̂s and Mds), but their vectors form angles with the ∆s vector that are
roughly twice as large. There are only two parameters which are negatively correlated with
the standardised Pearson test’s ∆s, namely σs and γ1,s. The standard deviation σs has the
strongest negative correlation to ∆s, with an angle between which is approximately 147.0◦.
The angle between ∆s and γ1,s is approximately 123.1◦.

The USS Test

Performing a PCA on the data set with the USS test’s ∆s, results in the loading plot of the
first two principal components shown in Figure 3.5b. This plot shows a pattern of vectors
similar to Figure 3.5a. The percentile-related variables are clustered together, and pointing
in the opposite direction of γ1,s. The shape parameter âs is pointing in the same horizontal
direction as the percentile-related cluster, but in the opposite direction of σs.

The relationships between ∆s and the other variables, however, are the opposite of what
we see in Figure 3.5a (although not the exact opposites). The variable with the strongest
positive correlation to ∆s is σs. The skewness γ1,s is also positively correlated, but only
slightly. The rest of the parameters are negatively correlated with ∆s, where âs forms the
largest angle (approximately 116◦) with ∆s. As seen in Figure 3.5a, âs is isolated from the
cluster of the percentile-related variables.

Stukel’s Score Test
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(c) Stukel’s Score Test

Stukel LRT1

Shape

Scale

Mode

Median
Mean

Standard deviation

Skewness

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
Dim1 (82.7%)

D
im

2 
(1

2.
9%

)

(d) Stukel’s LRT1
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(g) The IMT 2

Fig. 3.5 The loading vector plots of the first two PCs from the PCAs performed on the data
sets comprised by ∆s and their corresponding rows in Table 3.4. Each variable has a vector
which represents its PC loadings. The ∆s vectors are labelled by the name of their respective
test.
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The first two principal components of the PCA performed with Stukel’s Score test’s ∆s are
plotted in Figure 3.5c. The vector pattern looks like the USS loading plot has been mirrored
about the vertical axis, or the standardised Pearson loading plot mirrored about the horizontal
axis. Despite these pattern similarities, ∆s appears to have weaker correlations with the other
variables than what we see in Figure 3.5a and Figure 3.5b. This observation is supported by
the size of the angles between the vectors.

Stukel’s score test’s performance ∆s has the strongest positive correlation with b̂s , closely
followed by µs, Md and Mo. The only parameter with a negative correlation with ∆s in this
plot is γ1,s. The angle between their vectors is approximately 105.5◦, hence the correlation
does not appear to be very strong.

There are two variables whose loading vectors are nearly perpendicular to the ∆s loading
vector, namely âs and σs. The angles between the ∆s vector and the vectors of âs and σs, are
approximately equal to 89.7◦ and 89.1◦, respectively. Hence these two variables might be
uncorrelated with the ∆s of Stukel’s Score test, s = 1,2, . . . ,12.

Stukel’s LRT1

Overall, the strength of the linear relations between the ∆s variable and the other variables
appears to be weaker for Stukel’s LRT1 dataset compared to the standardised Pearson dataset
and the USS dataset.

The strongest positive correlation between the LRT1 test’s performance and another
variable is the one with σs. The angle between their vectors, however, is approximately
81.1◦. This is much closer to 90◦ than the less than 28.4◦ angle between the vectors for the
standardised Pearson test’s ∆s and the shape parameter, for example.

Stukel’s LRT1 test’s ∆s has the strongest negative correlation with âs. The vectors
belonging to ∆s and âs in Figure 3.5d form an obtuse angle approximately equal to 100.3◦.
Thus, the PCA indicates that Stukel’s LRT1 is not particularly strongly correlated with any
of the Weibull parameters. The five remaining parameters, γ1,s, b̂s, Mo, and finally the two
overlapping µs and Md, are only a few degrees away from being perpendicular to the ∆s

vector.

Stukel’s LRT2

The vector pattern in Stukel’s LRT2 loading plot in Figure 3.5e is fairly similar to its LRT1
counterpart, but indicates slightly different linear relations between Stukel’s LRT2 ∆s and
the other variables.

According to the first two principal components, b̂s is the variable with the strongest
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positive correlation with ∆s. The vectors of Mos, Mds and µs also form acute angles with
the ∆s vector, but they are slightly closer to 90◦. Hence percentile-related variables have the
vectors which make the smallest angles between themselves and the LRT2 test performance
vector.

The shape parameter âs is clearly separated from the four percentile-related variables, as
indicated by the approximately 89.0◦ angle between its vector and the LRT2 test’s ∆s vector.
The standard deviation σs, which has the strongest positive correlation to ∆s in the PCA
performed on Stukel’s LRT1 dataset, has an angle approximately equal to 89.929◦ between
its own vector and Stukel’s LRT2 ∆s vector. This might indicate that the modification of
Stukel’s LRT1 test causes the standard deviation to be less positively correlated with the
accuracy of α̂ belonging to Stukel’s LRT2 test.

In terms of negative correlation with ∆s, the only variable with this characteristic in
Stukel’s LRT2 loading plot is γ1,s. Its vector forms an angle with the ∆s vector which is
approximately equal to 106.9◦. This suggests that there is a slightly stronger relationship
than the one between Stukel’s LRT1 ∆s and âs.

IMT1

According to the first two principal components plotted in Figure 3.5f, the IMT 1’s
performance ∆s has the strongest positive correlation with âs. Similarly to all the other tests,
the shape parameter âs is isolated from the percentile-related cluster of variables, but they
all point towards the same vertical edge of the plot. Similarly to the âs vector, the vectors
of b̂s, Mos, Mds and µs also form angles less than 90◦ with the IMT 1’s vector, but they are
noticeably larger.

The IMT 1 ∆s has the strongest negative linear relation with σs, closely followed by γ1,s.
None of the Weibull-related vectors are close to being perpendicular to the ∆s vector, i.e.
their correlations with the performance of the IMT 1 test statistic are fairly strong according
to this PCA.

IMT2

The loading vector plot Figure 3.5f is fairly similar to its IMT 1 counterpart, but there
are some noticeable differences. The IMT 2 ∆s is also the most positively correlated with
âs, but the relation is slightly stronger than the one between the IMT 1 ∆s and âs. The
percentile-related variables are also positively correlated with the IMT 1 ∆s, but to a lesser
degree than âs.

Another similarity is that the IMT 2 ∆s vector has the strongest negative correlation with
σs variable. However, both γ1,s and σs form larger obtuse angles with the ∆s variable in this
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vector loading plot compared to the IMT 2 plot.

Summary

Given the above information, there are two sets of variables which emerge as potential
predictors of ∆s if we focus on the two variables with the strongest correlation with ∆s in
each PCA. The first set consists of the shape parameter âs and the standard deviation σs. The
the second set consists of the scale parameter b̂s and skewness γ1,s.

The shape parameter and standard deviation set had the strongest correlation with ∆s for
the following GOF tests: the Standardised Pearson test, the USS test, Stukel’s LRT1, IMT 1
and IMT 2. The scale parameter and skewness set had the strongest correlation with ∆s for
Stukel’s Score test and Stukel’s LRT2. Note that the tests with the weakest correlations
between ∆s and the Weibull-related variables are the three Stukel’s tests. Hence this text will
be limited to investigating the set with âs and σs and its prospective use in predicting the
behaviour of the Standardised Pearson test, the USS test, Stukel’s LRT1, IMT 1 and IMT 2.

3.5.2 The Weibull shape parameter and standard deviation as poten-
tial indicators of empirical significance levels

The standardised Pearson test

As mentioned in section 3.4, the standardised Pearson chi-square statistic resulted in
some very high empirical rejection rates of the true null hypothesis. This can be seen in
Figure 3.6a, where the circles representing |∆4| and |∆9| are much larger than the circles
belonging to the remaining situations. Both extreme values for α̂s coincide with the two
largest pairs of âs and σs values, which belong to situations 4 and 9.

Conservative α̂s occur only when the estimated shape parameter is relatively small and
standard deviation is large, but the more precise ∆2 = 0.1 is also in this area.

The 4 largest circles (excluding situation 4 and 9) coincide with âs ∈ [1.1420,1.7384]
and σs ∈ [0.2187,0.2327], but ∆3 = 0 and is also in this area of the heat map. Situation 3
and 12 have values for âs and σs that are very close to each other, yet ∆12 = 1.5 which is
relatively larger than ∆3. This might be explained, however, by the fact that situation 12
produces parameters and measures that are all greater than the ones produced by situation 3.

Despite being very close to each other in Figure 3.6b, ∆6 and ∆7 have opposite signs,
i.e. the test is conservative in situation 6, but too quick to reject in situation 7. Examining
these two situations reveals that situation 6 produces values smaller than situation 7 for
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Fig. 3.6 Heat maps of five GOF tests’ observed ∆s at different values of âs and σs. The colour
of the circles indicates the value of ∆s, i.e. if the test’s α̂ is smaller or larger than α . The
circle sizes indicate how much distance there is between α̂ and α , i.e. |∆s|.
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almost all parameters and measures listed in Table 3.4, except for σs and γ1,s. Furthermore,
the measures of central tendency, Mos, Mds and µs , are further apart in situation 6 than in
situation 7. These particularities might explain why ∆6 and ∆7 have opposite signs, but this
study is not comprehensive enough to determine this with certainty.

The USS test

One can see in Figure 3.6c, that the occurrences of negative ∆s are more dispersed for the
USS test than for the standardised Pearson test.

Similarly to the standardised Pearson test, the ∆s belonging to situations 6 and 7 have
opposite signs, but the difference is not as pronounced. Another similarity is the difference
between ∆3 and ∆12 despite adjacent âs and σs values. Furthermore, the USS test heat
map also exhibits a cluster of large ∆s in approximately the same area of the plot as the
standardised Pearson test heat map. It is worth noting that at least half of the situations
used in this simulation study produce fitted Weibull distributions with shape parameters and
standard deviations that fall within this area of the heat maps’ coordinate plane. So the fact
that larger values of ∆s are clustered together in this region might be incidental.

In this heat map, the four largest red circles (i.e. the four most anti-conservative situations)
are contained in the area of the plot where âs ∈ [1.2272,1.9455] and σs ∈ [0.2077,0.2393].
Situations 3 and 11 are also in this area, but ∆3 and ∆11 are equal to 0.3 and 0.5, respectively.

Stukel’s LRT1

The six situations with the largest values of ∆s for Stukel’s LRT1 are situations 7, 3, 11,
2, 10, and 12 (in descending order). Five of these six are found in the same area of the heat
map as the clusters mentioned for the standardised Pearson test and the USS test.

As seen in Figures 3.6b and 3.6c, |∆10| is considerable large, but has a lower standard
deviation and higher shape parameter which separates it from the main cluster of large ∆s’s.
This is also the case in the heat maps belonging to IMT 1 and IMT 2.

IMT1 and IMT2

Figures 3.6e and 3.6f show larger ∆4 than the USS test and Stukel’s LRT1, suggesting
that IMT 1 and IMT 2 might be more sensitive to large values of âs and small values of σs.
Situation 4 is also the only situation with γ1,s < 0. The circles where σs ∈ [0.225,0.257] are
all of an acceptable size, i.e. |∆s| ≤ 0.5. All of the negative ∆s have âs < 1.75, except for ∆9

in the IMT 1 heat map. Note that situation 9 has a much lower σs and also the γ1,s which is
the closest to 0.

The four situations with the largest |∆s| are situations 3, 4, 5, and 10. Their circles do
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not fall into the upper left corner of the heat maps. They have standard deviations which
are less than 1.75. Situations 11 and 9 are also placed in this area of heat map. For IMT 1,
∆11 = −0.6, whereas for IMT 2 ∆11 = 0.5. As mentioned previously, situation 9 has the
skewness γ1,s which is the closest to 0, so that might be what sets it apart from situation 3, 4,
5, and 10.

3.5.3 Future work

It was beyond the scope of this thesis to study this potential behaviour indicator further. If
time had allowed, we could have performed an additional principal component analysis,
similar to the one in Section 3.5, where the variables would be the different measures and
parameters of the fitted Weibull distribution and the estimated power of the tests for sample
sizes equal to 1000.

It would be interesting to see if the same variables were correlated with high power, as
the variables that were correlated with the differences delta between the empirical and the
nominal significance level. Perhaps the variables which are the most highly correlated are
different to the shape parameter and the standard deviation of the fitted Weibull distribution.
If that were the case, then one could look at two separate sets of viable Weibull parameters
and dispersion measurements to gauge how the goodness of fit test statistic will behave in
different settings.

If a visualisation tool could be made based on fitted Weibull distribution parameters and
measurements that quickly and intuitively could advise the user of how the goodness of the
tests potentially may behave, this would be a useful addition when performing data analysis.
It could potentially be time-saving and a more readable alternative to studying literature
describing the behaviours of the tests in written form.

However, an extensive amount of additional work is necessary to see if this may be
accomplished. A much more extensive range of distributions of fitted logistic probabilities
and larger samples of such distributions should be included in the study if this were to be
examined again. 12 estimated Weibull distributions for every sample size is unlikely an
optimal amount. This task is sadly to broad and comprehensive to be included in the subject
area of this thesis, and would hence be an interesting topic to cover in future work.



Chapter 4

Power Study

The study in this chapter was the second of two simulations studies to be conducted. In
addition to having appropriate rates of rejection when the fitted logistic model is correct, it is
also desirable for GOF tests to recognise when the null hypothesis is in fact false. A type
II error occurs when a test fails to reject H0 when H0 is false (Devore and Berk, 2012). If
a GOF test fails to reject H0 (the null hypothesis that the specified model is true) when the
specified model is missing one or multiple effects present in the true model, it has committed
a type II error. Likewise, the failure to discern that the specifications of an incorrect link
function g(πi) is also classified as a type II error.

The power of a test is the probability of not committing a type II error, hence it is a
central quality when evaluating a GOF test statistic. We need to know how often a test detects
that the model claimed to be true in H0 deviates from the true model (when this is in fact the
case).

4.1 Types of departure

A discrepancy between the true model and a specified model will be referred to as a departure
from the true model. This part of the simulation study examined the ability of the test statistics
to recognize four specific types of departures from the correct model. These departure types
are denoted by D1, D2, D3, and D4, and each of them consists of several models with
varying severity of misspecification in order to gauge the GOF tests’ sensitivity. The types of
departures addressed in the study were:
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DDD1 : the omission of the quadratic term from a linear predictor with one continuous
covariate,

DDD2 : the omission of the log term from a linear predictor with one continuous covariate,

DDD3 : the omission of the main effect of a binary covariate and its interaction with a
continuous covariate, and

DDD4 : the selection of an incorrect link function.

Algorithms which produced the observed rejection rates of the GOF statistics were
implemented in R. A general scheme of these algorithms is provided in the next subsection
and is followed by more in-depth descriptions that are specific to each of the four departure
types.

4.2 A General Outline of the Power Study Design

This section outlines the simulation procedure used to estimate the power of the GOF
statistics. The situations and structure used to examine the power bears a close resemblance
to that of Hosmer et al. (1997). As indicated in Section 3.1, there were cases where the
computation of Stukel’s score statistic failed. They were dealt with using the same approach
as in the significance level study.

For each departure type and sample size, the following sequence of steps were taken:

(i) The true models and their respective covariate effects were specified.
A set of κ true models, MT1,MT2, . . . ,MTκ

, with true covariate effects, βββ T1
,βββ T2

, . . . ,βββ Tκ
,

were specified. The constant κ is a positive integer, and βββ Tj
=

[
β j0 β j1 . . . β jk

]T,
j = 1, . . . ,κ . Recall from Section 1.1 that βββ T1

,βββ T2
, . . . ,βββ Tκ

are (k+ 1)× 1 vectors and
that k is the number of parameters in a GLM. For D1, D2, and D3, the only component
separating these κ models is βββ Tj

, j = 1, . . . ,κ . These βββ Tj
were chosen so that the effect

of the characteristic in focus ranged from low to substantial, whilst attempting to keep
the distributions of the πi’s produced as similar as reasonably possible. For D4, the linear
predictors were identical, i.e. βββ T1

= βββ T2
= . . .= βββ Tκ

, and MT1,MT2, . . . ,MTκ
only differed

by the choice of link functions g.

(ii) Observations of the covariate(s) and the binary responses were simulated.
The following procedure was carried out once for each sample size n:
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a) A generated sample of the covariate(s) was used to define a n× (k+1) design matrix
XXXn×(k+1).

b) For every MTj , XXXn×k+1 was multiplied by βββ Tj
to produce a n×1 vector consisting of

the model’s linear predictors, namely ηηη j =
[
η j1 η j2 . . . η jn

]T
= XXXn×k+1βββ Tj

. This
resulted in κ vectors – one for each true model.

c) For every MTj , its corresponding ηηη j was used to compute a n×1 vector of logistic

probabilities, namely πππTj =
[
π j1 π j2 . . . π jn

]T, where π ji = g−1(η ji), i = 1, . . . ,n.
For D1, D2, and D3, g−1(η ji) = eη ji/(1+eη ji) ∀ j = 1, . . . ,κ . For D4, g−1 was
different for each MTj . After these computations there were κ vectors of true
probabilities.

d) The resulting πππT1, . . . ,πππTκ
served as input when generating κ vectors of the response

variable, denoted yyy j =
[
y j1 y j2 . . . y jn

]T. These vectors of dichotomous outcomes
were reproducibly generated in R using the rbinom() function. Each generated yyyTj

was based on the exact same design matrix, XXXn×k+1.

(iii) The incorrect models were specified.
At this stage, models with the predetermined type of departure were specified. These
κ models are denoted by M1,M2, . . . ,Mκ . For D4, the components of M j were equal to
that of MTj except for the link function g. For D1, D2, and D3, M j were deliberately
misspecified by defining a simpler systematic component than in MTj , i.e. at least one
of the parameters present in βββ Tj

were omitted ( MTj and M j are nested models). The
design matrix of the incorrect models, denoted by XXX , was equal to XXXn×k+1, but without
the column(s) corresponding to the omitted parameter(s).

(iv) The incorrect models were fitted.
The computed yyy1,yyy2, . . . ,yyyκ and XXX could then be used to obtain estimates of the covari-
ate effects for the incorrect models. These estimates, denoted by β̂ββ 1, β̂ββ 2, . . . , β̂ββ κ , were
calculated using the glm() function in R. Once the values of β̂ββ j were fitted, it was pos-
sible to find the estimated linear predictors, η̂ηη j, and subsequently the estimated logistic
probabilities, π̂ππ j. For every M j,

η̂ηη j =
[
η̂ j1 η̂ j2 . . . η̂ jn

]T
= XXX β̂ββ j , and

π̂ππ j =
[
g−1(η̂ j1) g−1(η̂ j2) . . . g−1(η̂ jn)

]T
=
[
π̂ j1 π̂ j2 . . . π̂ jn

]T .

At this point it was finally possible to apply the GOF tests in order to test the null
hypothesis that the misspecified models, M j, were the true models of the underlying
mechanisms that produce the outcomes/response variables y j.
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(v) The GOF tests were applied to the fitted incorrect models.
The seven GOF statistics were calculated for each of the fitted incorrect models obtained
in the previous step. For every M j and test statistic, a p-value was computed (except for a
few cases where the computation failed) and the null hypotheses that M j is an adequate
model was rejected for p-values below α . This produced κ separate vectors, rrr1,rrr2, . . . ,rrrκ ,
with seven elements indicating whether the seven statistics rejected H0 or not (the value 1
indicated rejection and 0 indicated failure to reject).

(vi) Steps (ii), (iv), and (v) were repeated until R=1000 replications had been performed.
This resulted in R sets of κ vectors, rrr j, from which we can estimate the power of the GOF
tests for the departure type and sample size in question.

(vii) The empirical power of the GOF statistics were calculated.
After R replications, the rejection rate of each statistic was calculated for every misspecified
model, M j. For every model j = 1, . . . ,κ , the R separate rrr j vectors, which were computed
during step (v), were summed and consequently divided by R to provide us with the
proportion of replications where the statistics rejected M j. In the cases where M j had at
least one replication where Stukel’s score statistic failed to compute, the total number of
rejections was divided by the number of successful replications.

4.3 Details of the power study design

This section gives supplemental details to the brief overview given in Section 4.2 about the
power study design. Information on the choices of MTj , βββ Tj

, M j, and βββ j for the departure
types are provided. In addition, a figure containing the distributions of both πππTj and π̂ππ j

( j = 1, . . . ,κ) from a simulated data set, where n = 500, is presented for each departure
type. These figures are included to provide an approximate view of how πππTj and π̂ππ j were
distributed for the replications.

In D1, D2, and D3, defining κ vectors of βββ Tj
was done by following an approach similar

to that of Hosmer et al. (1997). Starting with βββ T1
, and subsequently increasing the size of

the element(s) of interest when defining the remaining βββ Tj
-s (while keeping the rest of the

parameters equal for all j), would have undesirable consequences.

In Section 3.4 we found that α̂ of one statistic could range from significantly less than
α (conservative) to significantly larger than α depending on how the πi-s were distributed.
Since the GOF tests did not perform uniformly, it was important to try to keep πππT1, . . . ,πππT5

as similarly distributed as possible. At the the same time, the parameter(s) which were to



4.3 Details of the power study design 47

be omitted in the misspecified models, had to increase in size for each MTj , j = 1, . . . ,κ ,
otherwise the study would be uninformative.

4.3.1 Departure type D1: Omission of a quadratic term

The set-up used to examine the power of the statistics when a quadratic term was omitted
from a logistic regression model is from Hosmer et al. (1997). The number of models, κ ,
was equal to 5. For all the true models, MTj , the linear predictor was defined as

η ji = β j0 +β j1xi +β j2x2
i , (4.1)

where xi was U(−3,3) distributed (i = 1, . . . ,n). The simulated observations of xi were
generated using the runif() function and were contained in XXXn×k+1. The πππTj , which were
computed using XXXn×3βββ Tj

and the inverse logit link g−1, were used as input for the rbinom()
function when simulating the response variables yyy j.

When specifying M j, the effect of the quadratic term, β j2, was omitted from the linear
predictor and the third column of XXXn×3 was omitted from XXX . Consequently, for all the
misspecified models, the estimated linear predictor was defined as

η̂ ji = β̂ j0 + β̂ j1xi, (4.2)

just as in Hosmer et al. (1997).

The five βββ Tj
were determined by using the same logic as in Hosmer et al. (1997). The

resulting πππT1 , . . . ,πππT5 had distributions of reasonable similarity. The effect of the quadratic
term, β j2, increased in size for each j = 1, . . . ,5. This was achieved by defining the following
equations:

g−1
{

η ji(xi)
}∣∣∣

xi=3
= 0.95 = π ji, (4.3)

g−1
{

η ji(xi)
}∣∣∣

xi=−1.5
= 0.05 = π ji , and (4.4)

g−1
{

η ji(xi)
}∣∣∣

xi=−3
= I = π ji, (4.5)

where I equals 0.01, 0.05, 0.1, 0.2, and 0.4 for MT1, . . . ,MT5 , respectively.

For every I, (4.3), (4.4), and (4.5) were solved simultaneously for βββ Tj
. This produced five

βββ Tj
(and hence five models) where the quadratic term became increasingly more influential.
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The larger the difference between g−1(−3) and g−1(−1.5), the greater the non-linearity.
This difference is controlled by I. Equations (4.3) and (4.4), which are held constant for each
j, ensure that the distributions are comparable.
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(a) The distributions of πππTj ( j = 1, . . . ,5) from a simulated example
data set where n = 500.
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(b) The distributions of π̂ππ j ( j = 1, . . . ,5) from a simulated example data
set where n = 500.

Fig. 4.1 The distributions of πππTj and π̂ππ j, respectively, for an example data set with departure
type D1 and n = 500.

The distributions of the true probabilities in MT1, . . . ,MT5 from a simulated example,
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where n = 500, are shown in Figure 4.1a. Starting by choosing βββ T1
and consequently just

increasing the value of β j2 would not have had the same results. Several experiments with
that approach lead to a histogram of π5i which was very dissimilar to the histogram of π1i.
Figure 4.1b shows the distributions of the estimated probabilities in M1, . . . ,M5 from the
same example used to generate Figure 4.1a.

4.3.2 Departure type D2: Omission of a log term

This particular type of misspecification, D2, was not examined by Hosmer et al. (1997), but
developed exclusively for this study. In D2, there were κ = 6 logistic regression models. The
linear predictor for MTj was defined as

η ji = β j0 +β j1xi +β j2 log(xi), (4.6)

where β j2 > 0, and xi was U(1,51) distributed (i = 1, . . . ,n) and generated using the runif()
function. The continuous explanatory variable xi was assigned this distribution in an effort
to mimic variables one might encounter in practice, such as the SAPS II score in Chapter 6.
Just as in Section 4.3.1, g−1(η ji) = eη ji/(1+eη ji) = πi j, and these πi j were used as parameters
by rbinom() when generating the y ji for MTj .

The lack of fit was due to the omission of the effect of the log term. The parameter
β j2 was not included in linear predictors belonging to M1, . . . ,M6, and the third column of
XXXn×k+1 was omitted from XXX . As a result, the estimated linear predictor was defined as

η̂ ji = β̂ j0 + β̂ j1xi, (4.7)

for j = 1, . . . ,6.

The process of defining the vectors βββ Tj
was based on the approach described in the

previous section. The effect of the log term, β j2, ranged from approximately 0.11 when j = 1,
to approximately 1.73 when j = 6. The value of β j1 was kept in the interval [0.13,0.27] ∀ j.
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This was achieved by defining the following equations:

g−1
{

η ji(xi)
}∣∣∣

xi=1
= 0.001 = π ji, (4.8)

g−1
{

η ji(xi)
}∣∣∣

xi=51
= 0.999 = π ji , and (4.9)

g−1
{

η ji(xi)
}∣∣∣

xi=26−J
= 0.5 = π ji, (4.10)

where J equals 0.5, 1.0, 2.0, 4.0, 6.0, and 10.0 for MT1 , . . . ,MT6 , respectively. Simultaneously
solving (4.8), (4.9), and (4.10) for βββ Tj

, and doing so once for every J, produced six βββ Tj
in

which β j2 becomes increasingly large.

We will now account for the reasoning behind the choice of the equations defined above.
The functional form of η ji was an instrumental characteristic in the process. The slope of η ji

in this setting,

d
dxi

η ji = β j1 +
β j2

xi
, (4.11)

decreases monotonically with xi ∈ [1,51]. Hence η ji increases the most rapidly for small
values of xi (i.e. values such that η ji is less than 0).

If viewed as a function of β j2, d
dxi

η ji increases monotonically with β j2 > 0. The larger
the β j2, the more rapidly η ji will reach 0. Hence the xi for which η ji = 0 should become
increasingly closer to 1 for each j = 1, . . . ,6. For this reason, it was decided that η ji

∣∣
xi=26−J

should equal 0 (where J > 0), such that an increase in J produces a larger β j2. This was the
basis for (4.10). The equations (4.8) and (4.9) were chosen in order to keep the frequency of
π ji ≤ 0.2 and frequency of π ji ≥ 0.8 somewhat constant for each J (or MTj).

The distributions of the true probabilities in MT1, . . . ,MT6 from a simulated example,
where n = 500, are shown in Figure 4.2a. The distributions of the resulting πππT1, . . . ,πππT5

were reasonably similar, but the frequency of large π ji did become substantially higher for
every model j = 1, . . . ,6. Figure 4.2b shows the distributions of the estimated probabilities
in M1, . . . ,M5 using the aforementioned example. The π̂ ji appear to be distributed quite
similarly to π ji, except for models MT4 and M4, where π̂ ji has slightly more observations in
the interval [0,0.1] than that of π ji.

When inspecting the distributions of π̂ππ j, it becomes evident that π̂ππ1 bears resemblance to
the true probabilities in Situation 1 in the significance level study (see Figure 4.3b ). This is
also the case for π̂ππ2, π̂ππ3, and π̂ππ4. One could also argue that among the situations covered in
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the significance level study, Situation 7 generates the probability distribution most similar to
that of π̂ππ5 and π̂ππ6. In Section 3.4, we saw that several statistics had rather dissimilar α̂1 and
α̂7, especially for sample sizes n = 100 and n = 500. It is therefore expected that the results
of the power study might show interesting patterns for these statistics.
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(a) The distributions of πππTj ( j = 1, . . . ,6) from a simulated example
data set where n = 500.
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(b) The distributions of π̂ππ j ( j = 1, . . . ,6) from a simulated example data
set where n = 500.

Fig. 4.2 The distributions of πππTj and π̂ππ j, respectively, for an example data set with departure
type D2 and n = 500.
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4.3.3 Departure type D3: Omission of the main effect of a binary co-
variate and its interaction with a continuous covariate.

The chosen set-up for D3 is more or less identical to the one proposed by Hosmer et al.
(1997) to examine this type of misspecification. However, an additional model (MT5) was
added to the four models which were detailed in Hosmer et al. (1997). Hence there are κ = 5
models in this set-up. The linear predictor in MTj was defined as

η ji = β j0 +β j1xi +β j2di +β j3xidi, (4.12)

where xi was U(−3,3) distributed (as in D1) and d had the Bernoulli(1/2) distribution
(i = 1, . . . ,n). When generating observations of xi and d, the runif() and rbinom() func-
tions were used, respectively. These two covariates were independent of each other. The
set.seed() function was used directly before the random generation of each covariate, and
they both had their own unique numeric n×1 vector which served as input for the preceding
set.seed().

The simulated observations of xi and d, as well as their interaction xd, were contained in
XXXn×4. Just as for D1, yyy j was generated by the rbinom() function with πππTj as input, where
πππTj was computed using XXXn×4βββ Tj

and the inverse log link. The main effect of d, β j2, and
the effect of its interaction with xi, β j3, were omitted when specifying M j. Consequently, for
all misspecified models M j, the estimated linear predictor was defined as

η̂ ji = β̂ j0 + β̂ j1xi, (4.13)

and the third and fourth column of XXXn×4 were omitted from XXX .

The βββ Tj
were determined using the same approach as described in Section 4.3.1. The

resulting πππTj had distributions which were similar to a certain extent (see example in Fig-
ure 4.3). There is a considerable difference between M1 and M4 in regards to the amount of
observations i where π ji > 0.5. This should be kept in mind when analysing the results of
the power study.

The main effect of the binary variable, β j2, increased from approximately 0.27 up to
approximately 2.17 for j = 1, . . . ,5, whereas β j3 increased from approximately 0.090 to
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approximately 0.72. This was achieved by defining the following equations:

g−1
{

η ji(xi)
}∣∣∣

xi=−3, di=0
= 0.1 = π ji, (4.14)

g−1
{

η ji(xi)
}∣∣∣

xi=−3, di=1
= 0.1 = π ji, (4.15)

g−1
{

η ji(xi)
}∣∣∣

xi=3, di=0
= 0.2 = π ji , and (4.16)

g−1
{

η ji(xi)
}∣∣∣

xi=3, di=1
= 0.2+K = π ji, (4.17)

where K equals respectively 0.1, 0.3, 0.5, 0.7, and 0.75 for MT1, . . . ,MT5 . The larger the
value of π ji in (4.17) is compared to that of (4.16), which is controlled by K, the greater β j2

and β j3 must be. For every K, (4.14), (4.15), (4.16), and (4.17) were solved simultaneously
for βββ Tj

, producing five βββ Tj
where β j2 and β j3 became larger for every j.

The distributions of the true probabilities in MT1, . . . ,MT5 from a simulated example,
where n = 500, are shown in Figure 4.3a. Equations (4.14), (4.15), and (4.16) ensure that
the distribution are reasonably similar. Figure 4.3b shows the distributions of the estimated
probabilities in M1, . . . ,M5 from the same example used to generate Figure 4.1a. There is a
large difference between the distributions of π̂ππ1 and π̂ππ5.

It is expected that the difference in how the estimated probabilities are distributed will
cause some of the statistics to perform differently as K increases, and not just as a result of the
increasing lack of fit. When comparing the histograms in Figure 4.3b to those in Figure 3.3b,
which belong to the situations used in the significance level study, π̂ππ1 does not appear to
be comparable to any of the situations presented. For π̂ππ2 and π̂ππ3, on the other hand, their
distributions bear resemblance to that of Situation 11. Situation 8 generates a distribution
of probabilities which is fairly similar to that of π̂ππ4 and π̂ππ5. Therefore, the statistics that
perform very differently in Situation 8 compared to Situation 11 (such as X2

st), might display
interesting behaviours as the lack of fit increases.
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(a) The distributions of πππTj ( j = 1, . . . ,5) from a simulated example
data set where n = 500.
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(b) The distributions of π̂ππ j ( j = 1, . . . ,5) from a simulated example data
set where n = 500.

Fig. 4.3 The distributions of πππTj and π̂ππ j, respectively, for an example data set with departure
type D3 and n = 500.

4.3.4 Departure type D4: Selection of an incorrect link function.

When evaluating the GOF tests’ ability to recognise lack of fit, the selection of an incorrect
link function (D4) was included as a type of departure from the true model. The set-up
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for D4 was based on the procedure for evaluating a test’s power to discern a misspecified
link function in Hosmer et al. (1997). This study specified one additional model, however,
making the number of models, κ , equal to 6.

In Hosmer et al. (1997), Stukel’s generalised model from Section 2.3 was used to generate
five different πππTj belonging to five models with differing link functions g j. In this study, we
chose another approach when generating πππT1 and πππT2 . The linear predictor was identical,
however, and defined in all six models as

η ji = 0.8xi, (4.18)

where xi is U(−3,3). All six yyy j were generated by the rbinom() function, with their
respective πππTj as parameters.

In MT1 , the true link function g1 is the probit link, hence

g−1
1 (η1i) = Φ(η1i) = π1i. (4.19)

The pnorm() function was used to generate the elements of πππT1 , whereas Hosmer et al.
(1997) used Stukel’s generalised logistic model to produce π1i in compliance with the probit
model (i.e. πϕϕϕ(η1i) where Stukel’s shape parameters ϕϕϕ = (0.165,0.165); see Section 2.3).
Due to advances made in computational fields of study since 1997, the pnorm() function
was considered a better alternative than the approach described in Hosmer et al. (1997).

In MT2 , the true link function g2 is the complementary log-log link, hence

g−1
2 (η2i) = 1− e−eη2i

= π2i. (4.20)

The expression for g−1
2 (η2i) was implemented directly in R, instead of computing πππT1 by

using πϕϕϕ(η2i) where ϕϕϕ = (0.62,−0.037) as done by Hosmer et al. (1997).

In the remaining four true models, however, it was necessary to use Stukel’s generalised
logistic model to generate πππT3 , . . . ,πππT6 since they were not based on well known tolerance
distributions. MT3 , . . . ,MT5 are from Hosmer et al. (1997), whereas MT6 was added specifically
for this study.

In MT3 , we wanted the tails of the sigmoid mean function, g−1
3 (η3i), to be longer than

the standard logistic function eηi/(1+eηi). This was achieved by first computing hϕϕϕ(η3i),
where ϕϕϕ = (−1.0,−1.0), followed by π3i = πϕϕϕ(η3i) = ehϕϕϕ (η3i)/

(
1+ehϕϕϕ (η3i)

)
. Contrastingly, we

wanted the mean function, g−1
1 (η4i), of MT4 to have shorter tails than the standard logistic

function. This was achieved by first computing hϕϕϕ(η4i), where ϕϕϕ = (1.0,1.0), followed by
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π4i = πϕϕϕ(η4i) = ehϕϕϕ (η4i)/
(

1+ehϕϕϕ (η4i)
)
.

In MT5 and MT6 , the models had asymmetrical mean functions, where one tail was shorter
than the other (recall from Section 2.3 that the standard logistic function is symmetric about
ηi = 0). The πππT5 in MT5 were computed in the same way as for MT3 and MT4 , but with
ϕϕϕ = (−1.0,1.0). As mentioned in Section 2.3, ϕ1 controls the behaviour of the upper tail,
and ϕ2 controls the behaviour of the lower tail. When ϕϕϕ = (−1.0,1.0), the mean function
g−1

5 (η5i) is asymmetrical with a long upper tail and short lower tail.

The model MT6 , which has the opposite tail heaviness of MT5 , was added to the study
to examine whether the statistics performed differently when the upper and lower tails’
heaviness was reversed. In this text, the term opposite tail heaviness refers when one model
uses ϕϕϕ = (c1,c2) and another uses ϕϕϕ = (c2,c1) when c1c2 < 0, c1,c2 ∈ R. Hence πππT6 was
computed using ϕϕϕ = (1.0,−1.0).

Figure 4.4a compares the true probability curves π ji(η ji) to the standard logistic function
eη ji/(1+eη ji), which is what the probability curves would have looked like if the logit link were
the correct link function. All the plots in Figure 4.4 are based on the exact same simulated
example data set where n = 500. The distributions of the true probabilities in MT1, . . . ,MT6

are shown in Figure 4.4b. This figure shows a wide variety of distributions, which is not
unexpected due to variety of the MTj . There is also a range of different distributions in
Figure 4.4c, which presents the distributions of the estimated probabilities in M1, . . . ,M6 for
the example data set.

Figure 4.4c contains plots which are reminiscent multiple histograms in Figure 3.3b. The
example distributions of π̂ππ1, π̂ππ2, and π̂ππ4, are similar to the distribution presented for Situation
2. The plot of the distribution corresponding to Situation 4 is similar to that of π̂ππ3. Thus it
is expected that X2

st will display very high percentages of rejection for model MT3 due to its
problematically large α̂4 in the significance level study.

In contrast, π̂ππ5 and π̂ππ6 are not as straightforward to compare to the histograms in Fig-
ure 3.3b. The example histogram of π̂ππ5 is somewhat similar to that of Situation 2, but not
to the same degree as π̂ππ1, π̂ππ2, and π̂ππ4. Moreover, the histogram of π̂ππ6 does not have a clear
candidate in terms of similarity, but its minor left skewness and lack of π̂6i close to 0 is worth
noting.
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(a) Plots of π ji against η ji. The green points are the true π ji

for the example data set where n = 500. The blue dashed line
represents the standard logistic function eη ji/(1+eη ji ).
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(b) The distributions of πππTj ( j = 1, . . . ,5) from a simulated
example data set where n = 500.
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(c) The distributions of π̂ππ j ( j = 1, . . . ,5) from a simulated
example data set where n = 500.

Fig. 4.4 The distributions of πππTj and π̂ππ j, respectively, for an example data set with departure
type D4 and n = 500.
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4.4 The Results of the Power Study

The percentages of replications where the false H0 was rejected are presented in Table 4.1.
Results for each type of departure from the true model is presented in the following sections.

As in the significance level study, there were settings with replications where the compu-
tation of Stukel’s score test statistic failed. The results from these settings were included if
they had less than 25% failed replications. If there was more than 25% computation failure,
the resulting empirical power was omitted. The results in Table 4.1 marked with one asterisk
belong to settings with failed computations of Stukel’s score test statistic, but in no more
than 15% of the 1000 replications. Two asterisks indicate over 15% failed replications.

4.4.1 Power assessment results for departure type D1

The results from the simulations to assess the statistics’ power to detect a lack of fit due to
departure type D1 is listed in Table 4.1a. All seven tests managed rather well to detect that a
quadratic term was missing from M j, j = 1, . . . ,5. The estimated power improves drastically
when I is increased from 0.01 to 0.05.

The distributions of π̂ππ j were right skewed. In terms of distributions of probabilities, the
most similar situation in the significance level study is Situation 6 (see Figure 3.3b). As I
approaches 0.4, the distributions start to look more like that of Situation 11. Therefore, when
examining whether the estimated significance levels of the statistics may offer explanations
as to the estimated power results, we will refer to the statistics’ α̂6 and α̂11 from Table 3.2.
It should be kept in mind, however, that the distribution of true probabilities produced by
Situation 6 and 11, and the distributions of π̂ππ j are not identical.

The statistic which outperformed the others most frequently was Ŝst. This is promising
for the USS test, especially when considering that in Situation 6, its α̂6 were either close
to α or slightly less than α . IMT 2 stood out by having the lowest power in all situations
where the all seven statistics did not perform identically. In most of the situations, it was
outperformed by a noticeable amount.
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Table 4.1 Simulated percent rejection at α = 0.05 using sample sizes 100, 500, and 1000,
with 1000 replications. The entries are the percentages of replications where the statistic
rejected the fit of the misspecified model M j with one of the four departure types.

(a) D1: Omission of a quadratic term

Statistic/sample size Correct model

MT1 , I = 0.01 MT2 , I = 0.05 MT3 , I = 0.1 MT4 , I = 0.2 MT5 , I = 0.4

100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000

St. Pearson, X2
st 6.2 8.5 10.1 36.2 86.7 98.8 60.8 99.4 100 84.3 100 100 96.9 100 100

USS, Ŝst 4.7 6.5 10 35.3 89.6 99.3 62.8 99.9 100 87 100 100 98.5 100 100
Stukel’s score 5.5 6.9 9.4 30.0* 90 99 56.6* 99.8 100 82.1* 100 100 96.8** 100* 100*
Stukel’s LRT1 7 6.1 8.9 26.4 87.4 98.9 51.3 99.6 100 79.6 100 100 96.7 100 100
Stukel’s LRT2 7 6.1 8.9 26.4 87.4 98.9 51.4 99.6 100 80.1 100 100 96.7 100 100
IM1 7 7.2 8 32.2 88.5 99 56.5 99.8 100 83 100 100 96.7 100 100
IM2 4.3 5.5 7.1 12.9 76.2 98.7 28.7 98.8 100 56.4 100 100 88.9 100 100

(b) D2: Omission of a log term

Statistic/sample size Correct model

MT1 , J = 0.5 MT2 , J = 1.0 MT3 , J = 2.0 MT4 , J = 4.0 MT5 , J = 6.0 MT6 , J = 10.0

100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000

St. Pearson, X2
st 2.8 6.2 6.4 2.7 6.0 6.0 3.1 5.8 6.3 3.2 6.5 8.2 3.8 8.8 10.8 4.6 12.1 19.0

USS, Ŝst 3.6 5.7 4.7 3.9 5.2 4.7 3.9 4.9 4.3 4.8 4.8 5.5 5.9 5.1 6.4 8.2 13.3 16.9
Stukel’s score 5.1 6.4 5.0 4.1 5.6 5.9 4.2 4.6 4.9 6.2 6.0 8.9 6.1 9.6 15.6 7.2 26.2 48.2
Stukel’s LRT1 10.3 6.6 5.9 9.2 6.0 6.5 9.7 6.7 6.5 9.9 9.4 10.5 10.5 11.4 16.7 11.4 27.4 49.2
Stukel’s LRT2 10.3 6.6 5.9 9.2 6.0 6.5 9.7 6.7 6.5 9.9 9.4 10.5 10.5 11.4 16.7 11.4 27.4 49.2
IM1 4.6 5.7 5.5 4.6 5.8 5.7 4.7 6.4 5.9 5.0 7.9 9.8 6.0 11.9 15.8 7.6 25.6 45.0
IM2 5.8 4.2 3.7 4.7 4.3 5.5 6.7 5.3 5.8 5.6 7.1 7.4 5.7 7.6 10.2 6.1 13.3 26.3

(c) D3: Omission of the main effect of a binary variable and its interaction term.

Statistic/sample size Correct model

MT1 , K = 0.1 MT2 , K = 0.3 MT3 , K = 0.5 MT4 , K = 0.7 MT5 , K = 0.75

100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000

St. Pearson, X2
st 56.8 35.5 18.8 46 16.7 8.1 32.8 7.1 4.8 25.7 6 8.7 25.8 8.2 19.5

USS, Ŝst 5.3 6 4.8 5.2 5 4.7 5.3 5.7 5.5 6.3 10.7 16.8 8 20.5 36.8
Stukel’s score - - - - - - - - - 5.5** 9.3* 15.1* 7.9* 18.9* 35
Stukel’s LRT1 5.5 5.8 4.8 5.7 4.9 4.6 7 5.3 5.6 7.6 9.8 15.7 10 18.9 35.6
Stukel’s LRT2 5.5 5.8 4.8 5.6 4.9 4.6 6.5 5.5 5.5 7.3 10.3 16.7 9.8 19 35.6
IM1 4.3 4.7 4.6 5 4.8 4.4 4.8 5.1 5.7 6.2 7.5 12.7 7.2 15.4 29
IM2 4.5 4.7 4.6 5 4.7 4.5 5.1 5 5.7 6.4 8.1 13.4 7.6 16.5 30

(d) D4: Specification of an incorrect link function.

Statistic/sample size Correct model

MT1 , probit link MT2 , c. log-log link MT3 , long tails MT4 , short tails MT5 , as. long-short tails MT6 , as. short-long tails

100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000

St. Pearson, X2
st 2.2 5.1 11.8 9.8 11.8 15.5 73.8 60.4 60.6 0.5 46.5 95.3 21.8 25 35.6 21.6 27.3 36.4

USS, Ŝst 5.5 10.1 15.7 6.6 9.3 11.7 8.2 17.7 26.4 14.1 79.9 98.4 8.7 16.1 25.8 8.4 16.9 26.5
Stukel’s score 3 6.7 10.7 49.5 100 100 6.7 14.4 21.1 2.4 56.6 94.4 69 100 100 68.6 100 100
Stukel’s LRT1 11 10.4 15.1 18 68.8 96.5 6.1 12.8 19.9 21.5 75.8 97 52.9 99.8 100 51.2 99.9 100
Stukel’s LRT2 11 10.4 15.1 18 68.8 96.5 6.1 12.8 19.9 21.5 75.8 97 52.9 99.8 100 51.2 99.9 100
IM1 4.6 9.8 15.9 6.3 9.3 11.9 8 17.4 26.4 9.7 79.3 98.5 8.3 16.6 26.1 8.2 17.4 27.4
IM2 8.6 11.9 17.8 6.7 8.3 11.2 7.6 17.4 26.4 24.3 86.1 99 7.6 15.8 25.7 7.8 15.9 27



60 Power Study

When I = 0.01, the two Stukel’s LRT statistics and IMT 1 had the highest power for the
smallest sample sizes. These three statistics have α̂6 which are greater than 6.0%. This may
account for their higher rejection percentage. The IMT 2 statistic, and X2

st, also had empirical
significance levels greater than 6.0%. Among the statistics which did not have an α̂6 > α

when n = 100, Stukel’s score statistic was the one with the highest power.

The IMT 1 has considerably higher power than IMT 2 in all situations. The IMT statistics
had identical α̂6 for all sample sizes, hence the difference in their estimated power is not due
to dissimilar significance levels. It should be kept in mind, however, that IMT 2 has a smaller
α̂s than IMT 1 in most of the situations where n = 100. Still there is strong evidence of IMT 1
being a more powerful test statistic as its simulated percentage of rejection is consistently
higher and by a considerable amount in many cases.

When I ≥ 0.2, every statistic has an estimated power of 100% when n= 500 and n= 1000.
However, when n = 100, there is a variety of results. When I = 0.4, IMT 2 is the only statistic
with a rejection percentage below 90%, whereas the remaining statistics reject H0 in at least
96.7% of the replications. When I = 0.2, it is also IMT 2 that has the poorest power, close to
50%, whereas the remaining statistics reject in close to 80% of the time.

Stukel’s LRT1 and LRT2 performed identically in all but two settings. The LRT2 had
a minutely higher rejection rate than LRT1 for MT4 and MT5 when n = 100, despite the fact
that LRT1 had α̂11 = 6.9 compared to LRT2 which had α̂11 = 6.8. The results in D1 do not
give strong evidence for favouring the modified LRT2 over the original LRT1, but it certainly
does not discount the potential of the modified version.

The standardised Pearson test performed well compared to the other tests when n = 500
and n = 1000 in MT1 . This is promising in terms of its power, since X2

st had conservative
rejection rates in Situation 6 of the significance level study for those sample sizes. In addition,
X2

st had the highest estimated power when n = 100 in MT2 . In this setting, however, it only
outperforms Ŝst by a small amount. In addition, Ŝst was conservative in Situation 6 in the
significance level study, whereas X2

st had a larger rejection region than desired.

4.4.2 Power assessment results for departure type D2

The results from the simulations to assess the statistics’ power to detect a lack of fit due to
departure type D2 is listed in Table 4.1b. None of the test statistics had an estimated power
exceeding 50%. The percentages of replications where the statistics rejected the false H0

were disappointingly low.
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As mentioned in Section 4.3.2, the distributions of π̂ππ1, . . . , π̂ππ4 are similar to that of the true
probabilities in Situation 1 in the significance level study, and π̂ππ5 and π̂ππ6 bears resemblance to
Situation 7. Hence when examining whether the estimated significance levels of the statistics
may provide insights about the estimated power results, we will refer to the α̂1 and α̂7 from
Table 3.2.

Stukel’s LRT1 and LRT2 had the highest power in all the situations, except in MT5 when
n = 500 where IMT 1 had a slightly higher rate of rejection. The power of the LRT2 statistic
was identical to that of LRT1. In Situation 1, these two statistics performed identically in
terms of empirical significance levels. In Situation 7, however, LRT2 was considerably less
anti-conservative than LRT1 for sample sizes of 100 and 1000.

The statistics which most frequently had the lowest power in a situation was X2
st and

Ŝst. When n = 100, the power of X2
st was below the nominal significance level α for

every MTj , j = 1, . . . ,6. This poor performance does not appear to be due to the empirical
significance level of the statistic in Situation 1 and 7, which were both greater than α when
n = 100.

The USS test also resulted in percentages of rejection below 5%. This occurred when
evaluating M1, M2, M3, and M4, and does not appear to be explained by its values of α̂1.
The USS test had α̂1 very close to α , and α̂1 > α when n = 1000. Furthermore, the models
for which Ŝst had power above the nominal α for all three sample sizes are MT5 and MT6 .
However, in Situation 7 we saw that Ŝst was conservative when n = 100 and 500. This
implies that the poor power of the USS test for D2 is not a consequence of its empirical
rejection region.

The standardised Pearson test and USS test were not alone in having a limited ability
to detect that a log term was missing from M j. The IMT statistics and Stukel’s score test
statistic did not perform well either. In almost every situation, IMT 1 was more powerful
than IMT 2. When n = 100 for MT1, . . . ,MT4 , however, IMT 2 was more powerful than IMT 1,
despite IMT 2 being more conservative in Situation 1 in the significance level study. However,
IMT 2 had only slightly higher percentages of rejections , thus it is not necessarily true that it
is better at detecting lack of fit than IMT 1 in small sample cases where the effect of the log
term is less pronounced.

For this particular type of departure, even larger sample sizes in the simulations are
necessary for observing higher power. Additional simulations where n = 10,000 showed
that a power of 100% was only achieved by the three Stukel’s statistics and the IMT statistics
for MT6 when J = 10.0. The remaining two statistics, X2

st and Ŝst, rejected M6 in 73% and
63% of the replications, respectively.
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The additional simulations also revealed that when n = 10,000, the three Stukel’s statis-
tics’ power was over 50% for MT4 , and over 90% for MT5 . The IMT statistics rejected the
false H0 in over 40% of the replications for MT4 and over 80% of the replications for MT5 .
Overall, the standardised Pearson test performed better than the USS test when n = 10,000,
but both of them had markedly poorer power than the remaining five test statistics. In the
additional simulations, the distributions of π̂ππ4 and π̂ππ5 were more similar to that of Situation
1, as opposed to Situation 7.

4.4.3 Power assessment results for departure type D3

The results from the simulations to assess the statistics’ power to recognise a misspecified
model due to departure type D3 is listed in Table 4.1c. The results for the additional model
MT5 , where K = 0.75, showed that the power of Ŝst, Stukel’s score statistic, Stukel’s LRT1
and LRT2 statistics were close to 35% when n = 1000.

As mentioned in Section 4.3.3, the distributions of π̂ππ2 and π̂ππ3 are similar to that of the true
probabilities in Situation 11 in the significance level study, and π̂ππ4 and π̂ππ5 bear resemblance
to the histogram belonging to Situation 8 in Figure 3.3b. When evaluating whether the
estimated significance levels of the statistics may account for certain characteristics displayed
in Table 4.1c, we will refer to the α̂11 and α̂8 from Table 3.2.

The statistic with the highest estimated power in most situations is X2
st. It appears to

perform dramatically better than the six other statistics for all sample sizes when K = 0.1
and 0.3, and for the two smallest sample sizes when K = 0.5. For MT1 , MT2 , and MT3 , the
estimated power of X2

st decreases as n increases. This is most likely a consequence of the
rejection region of X2

st, i.e. its empirical significance level which we assume is comparable to
α̂11 in these cases.

The α̂11 ×100 values belonging to the standardised Pearson test statistic in Table 3.2, are
respectively 16.4, 5.0, and 6.4 for sample sizes 100, 500, and 1000. In Section 3.3, we saw
that X2

st was very unstable for estimated probabilities with distributions where the extremities
of one or both tails had either very few or no observed values. This was the case in Situation
4, 9, 10, 11, and 12 for multiple example data sets. Thus the behaviour of X2

st is not surprising.

The statistic which most frequently had the lowest power was IMT 1, followed closely by
IMT 2 which performed slightly better than IMT 1 when the omitted covariate effects were
the most substantial. In Table 4.1c, IMT 2 has a higher rejection rate than IMT 1 in 9 out
of 15 situations despite having a smaller rejection region than IMT 2 in Situation 8 (for all
sample sizes) and in Situation 11 for sample sizes 100 and 500.
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The computation of Stukel’s score test statistic failed in more than 25% of the replications
for the data simulated for MT1 , MT2 , and MT3 . This was not surprising as the observed π̂ππ1, π̂ππ2,
and π̂ππ3 were highly skewed, and the statistic failed to compute in some of the replications
for Situation 11. For the two true models where the estimated power of Stukel’s score test
statistic was included in the results, its performance was comparable to the USS test.

Observations made in Section 3.3, indicate that Stukel’s LRT1 and LRT2 behave slightly
differently when the estimated probabilities have highly skewed distributions (like the
distributions produced by Situation 6 and 7 in Figure 3.3b), especially when n = 100. The
LRT2 is more powerful than LRT1 in almost all situations where n = 100. This may be
explained by the fact that the LRT1 was considerably more anti-conservative than LRT2 in
almost all of the settings where their empirical significance levels were not identical.

The USS test was very similar to Stukel’s LRT statistics for the models where the
estimated probabilities were comparable to that of Situation 11 (MT2 and MT3). Interestingly,
the USS test was mostly conservative in Situation 11, and had α̂11 which were smaller than
that of Stukel’s LRT1 and LRT2 statistics. For the models we compare to Situation 8 (MT4

and MT5), Ŝst had lower power than the LRT statistics when n = 100. This coincided with
settings where the α̂8 of Stukel’s LRT statistics were considerably more anti-conservative.
When n = 500 and 1000, Ŝst performed slightly better. This is not surprising if one considers
that the USS test had somewhat larger rejection regions in Situation 8 for these sample sizes.

4.4.4 Power assessment results for departure type D4

The results from the simulations to assess the statistics’ power to detect a lack of fit due to
departure type D4 is listed in Table 4.1d.

The probit model

The tests had poor power when the correct model was MT1 . This is not surprising considering
the similar symmetrical s-shape of the mean function of the probit model, which is relatively
similar to the mean function of the logistic regression model. The IMT 2 statistic performs
relatively well, and it is more powerful than IMT 1 despite being more conservative in
Situation 2 in the significance level study.

The complementary log-log model

For MT2 , when the correct link function was the complementary log-log link, Stukel’s score
statistic was the most powerful. When n = 100, it exhibited an estimated power greater than
40%, whereas the remaining statistics all had power less than 20%. Furthermore, Stukel’s
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score statistic has an empirical significance level which is reasonably close to α in Situation
2. Stukel’s LRT1 and LRT2 had identical power, and were almost as powerful as Stukel’s
score test. In contrast to the results for MT1 , in this case the IMT 2 was the worst performer.

The long tails model
When the correct model was MT3 , where the mean functions had longer tails than the standard
logistic model, the highest percentages of rejection belonged to X2

st. This was not unexpected
due to how alarmingly anti-conservative the standardised Pearson test was for all sample
sizes in Situation 4. When n = 100 and 1000, the statistic with the highest power, which also
had an acceptable α̂4 , was Ŝst. When n = 500, however, it was the IMT statistics.

The short tails model
When the correct model was MT4 , where the mean functions had shorter tails than the standard
logistic model, the highest percentages of rejection belonged to the IMT 2 statistic. The
IMT 2 statistic performed a lot better than IMT 1 for sample size n = 100, and slightly better
for larger n. When n = 100, the IMT 1 is relatively conservative, but it has α̂2 close to α for
larger n. Similarly to the results reported in Hosmer et al. (1997), in the n = 100 version
of MT4 , the power of the standardised Pearson test is almost 0% – far below the nominal
significance level α .

The asymmetric tails models
There was no obvious corresponding situation from the significance level study in terms
of distribution of fitted probabilities. The statistics performed very similarly when the true
model was MT5 compared to when the true model was MT6 . This indicates that reversing
which tail is short and which is long has no significant consequences in terms of power. The
distributions of π̂ππ5 and π̂ππ6 were fairly similar. Several examples tested out with different
simulated data show a distribution of the fitted probabilities more similar to that of the
long-short model example, than what we see in Figure 4.4c.



Chapter 5

Summary of Simulation Studies

5.1 The empirical significance levels of the GOF test statis-
tics

Overall, six of the seven statistics had a rejection rate fairly close to 5% for all null hypotheses
and all three sample sizes.

In general, the information matrix test (IMT) statistics are the closest to the desirable
empirical significance level of 5% in more situations than the other tests when the sample size
was equal to 1000. IMT 1 was preferable over IMT 2 for the smallest sample size, whereas
IMT 2 appeared to have a more desirable significance level for larger sample sizes. Stukel’s
score test also performed well for sample size equal to 1000.

For the smaller sample sizes n = 100 and n = 500, the USS test appears to be the best
choice in most situations, closely followed by Stukel’s score test. On the other hand, when the
sample size is equal to 1000, it is the IMT 2 statistic that yielded more empirical significance
levels closer to α in the study.

Among the three Stukel’s tests, the empirical significance level of Stukel’s score test
was closer to the nominal level than the Stukel’s LRT tests in most situations, though the
advantage of Stukel’s score test statistic was slightly less dominant for larger sample sizes.
This was expected due to score tests and likelihood ratio tests having the same asymptotic
distributions (see Section 2.2).

In brief, Stukel’s LRT1 and LRT2 statistics behaved identically or very similarly most of
the time, but not in situations that produced highly skewed distributions of π̂i. These types
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of settings are what initially motivated modifying the original Stukel’s LRT1 statistic, so
this difference was intended. In these settings, we saw that the LRT2 had a more desirable
empirical significance level.

An implication of this study is the possibility that the LRT2 statistic might be a preferable
alternative to the original LRT1 statistic with regards to type I errors. Nevertheless, a more
comprehensive study of modified Stukel LRT statistics is necessary. The rule of excluding
one of Stukel’s additional variables from the alternative model when its observed vector
consisted of less than 10% non-zero elements was chosen by individual discretion, and was
not the outcome of systematic and extensive exploration.

In some situations the standardised Pearson chi-square statistic X̂2
st rejected H0 at an

alarming high rate – even when n = 1000. This was surprising considering how widespread
Osius-Rojek standardisation procedures are, but in line with weaknesses pointed out in texts
like Hosmer (2013).

In Section 3.3, we saw that X2
st was very unstable for estimated probabilities with distri-

butions closely centred around 0.5, or with highly skewed distributions with fat tails where a
considerable proportion of the probabilities were close to 0.5. The USS test was much more
stable overall, despite having a similar standardisation method. It was slightly conservative,
but the size of its rejection region stabilised as with larger sample sizes.

The rate of large values of X2
st (which result in rejection of H0) when π̂i are close to 0.5

is most likely due to the functional form of the classic Pearson chi-square statistic X2 (see
equation 2.1). The squared Pearson residual, which is an observation’s contribution to X2, is
defined as

r(yi, π̂i)
2 =

(yi − π̂i)
2

π̂i(1− π̂i)
, (5.1)

(Hosmer, 2013). Hence when π̂i for a specific observation is close to 0.5, the contribution
r(yi, π̂i)

2 will be of a considerable magnitude (close to 1). If the majority of the observations
have π̂i close to 0.5 (such as in situation 4), then X2 is likely to be sizeable.

As noted by Hosmer (2013), observations where either: 1) yi = 1 and π̂i is small, or 2)
yi = 0 and π̂i is large, can result in a X2 large enough to reject H0. One single observation
with that characteristic can be enough to inflate X2 to a value resulting in rejection. If yi = 1
and π̂i = 0.18, for example, the contribution r(1,0.18)2 is approximately 4.56. In situation
4, where most of the observations produce r(yi, π̂i)

2 close to 1, one single instance where
|yi − π̂i| is large can be enough to skyrocket the value of X2. The standardised USS statistic
S = ∑

n
i=1(yi −πi)

2 does not have this issue as the squared residual for each observation can
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be no larger than 1.

Hosmer (2013) also mentioned that observations with large |yi − π̂i| can also amplify
σ̂2

P, the estimated variance of X2. This reduces the size of X2
st, which in turn may cause the

standardised Pearson test to fail to reject even though X2 is large. The observed values of
π̂ j(1− π̂ j) are less influential when estimating the variance of the standardised USS statistic
Ŝ. Hence the USS test is favoured in settings like these (Hosmer, 2013). This is fits well with
our findings from Section 3.4.

As previously mentioned, parts of our power study design overlaps with the simulation
study in Hosmer et al. (1997). We have three GOF tests in common, namely the standardised
Pearson, the USS, and Stukel’s score test. Table 4.1 shows considerably different power to
detect model departures D3 and D4 than results reported by Hosmer et al. (1997) for these
three tests.

The aforementioned differences could be attributed to the differing methods and software
used to generate the true probabilities of MTj . Different statistical software was used, and the
equations used when computing the true probabilities for MT1 and MT2 were dissimilar. This
should be taken under advisement when comparing our test performances to the reported
results in Hosmer et al. (1997). This is particularly important in relation to X2

st. It can
be argued that there is considerable ambiguity in Hosmer et al. (1997) regarding which
moment estimates and distribution were actually used when calculating the p-values for their
simulation results. In addition, the Osius and Rojek estimator of the mean of the classic
Pearson chi-squared statistic used when computing X2

st is not identical to the estimator in
Hosmer et al. (1997) (see Section 2.1).

5.2 The empirical power of the GOF test statistics

5.2.1 Omission of a quadratic term

All seven tests managed very well to detect the omission of a quadratic term when its effect
β̂2 was greater than 0.2. The large increase in power which occurred when β̂2 increased from
approximately 0.04 to 0.22 was also present in the equivalent set-up in Hosmer et al. (1997).
This is most likely explained by the large increment in β̂2. It is plausible that including
additional correct models with β j2 ∈ [0.04,0.21] in the study design would have been better
for determining how influential the quadratic term must be for the statistics to detect that it is
missing from M j.
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Among the statistics which were not anti-conservative when the sample size equalled
100, Stukel’s score statistic was the one with the highest power detect the omitted quadratic
term. Stukel’s LRT2 was marginally more powerful than LRT1 in a few settings, otherwise
the two statistics had identical power to detect the missing quadratic term. The results for
this departure type do not give strong evidence for favouring the modified LRT2 over the
original LRT1, but it certainly does not discount the potential of the modified version.

The IMT 1 had considerably higher power than IMT 2 in all situations. The standard-
ised Pearson test performed well when the sample sizes were 500 and 1000 for estimated
probabilities where a large proportion of the estimates were close to either 0 or 1.

5.2.2 Omission of a log term

When a log term was omitted, none of the GOF tests had any substantial power for the
sample sizes included in the study. Stukel’s LRT1 and LRT2 were the most powerful in
almost every configuration. The power of the LRT1 and LRT2 statistics were identical, but
there are indications that the significance of the LRT2 statistic was more appropriate.

The standardised Pearson test and the USS were the least powerful when assessing
whether the specified model was missing a log term. Even when the sample size was
specified as 10,000, none of them exceeded 80% in the cases with the most pronounced
lack of linearity, whereas the other five test statistics resulted in 100% rejections. The IMT
statistics and Stukel’s score test statistic were slightly more powerful than the standardised
Pearson test and the USS test. In general, IMT 1 was more powerful than IMT 2.

5.2.3 Omission of the main effect of a binary covariate and its interac-
tion with a continuous covariate

For the true models which were the most dissimilar to the specified logistic regression model,
none of the statistics had the power to detect the omitted binary variable and its interaction
with the continuous variable more than 37% of the time. The tests with the least poor power
were the USS test, Stukel’s LRTs, and Stukel’s score test. However, due to computation
failure, Stukel’s score test lacks results for most of the settings.

The high rejection rates of X2
st when the binary covariate and the interaction term are

omitted, are undermined by its exceedingly high empirical significance levels. The estimated
power of the standardised Pearson test is most likely attributed to its inflated rejection region
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for π̂i distributed as described in the previous section – the models fitted in this study range
from having highly skewed π̂i with a considerable proportion of values close to 0.5, to
being U-shaped and spanning the entire unit interval [0,1]. Along with this range of π̂i, the
standardised Pearson ranges from having high power to low power.

As expected due to the distributions of π̂ππ j, the estimated power of Stukel’s LRT statistics
were dissimilar in several settings. The LRT2 was more powerful than LRT1 in almost all
situations with 100 observations. This may be explained by the fact that the LRT1 was
considerably more anti-conservative than LRT2 in almost all of the settings where their
empirical significance levels were not identical.

The USS test was more powerful than the information matrix tests, but there was no
clear indication as to whether it performed better than Stukel’s LRTs. The asymptotically
equivalent IMT 1 and IMT 2 both performed poorly, though there was a tendency for IMT 2
to be slightly more powerful despite being less anti-conservative in comparable situations
from the significance level study.

5.2.4 Incorrectly specified link function

In general, Table 4.1d shows a wide variety of results, and there is no single statistic that
stands out as being powerful across all models. As mentioned in Section 4.4, the results show
considerably different power to detect a misspecified link function than results previously
reported by Hosmer et al. (1997) for the three GOF statistics our studies have in common.
These differences are probably partly due to our differing methods and software used to
generate the true probabilities of MTj . Different statistical software was used, and the
equations used when computing the true probabilities for MT1 and MT2 were dissimilar.

The three Stukel’s test statistics performed relatively well when the true model was MT2 ,
MT4 , MT5 , and MT6 . The two models where Stukel’s score test and Stukel’s LRT statistics had
relatively low power compared to the other models, was MT1 and MT3 . The probit model MT1

was difficult to detect for all seven statistics. Additionally, since MT3 produces π̂ππ3 which are
similarly distributed to the fitted probabilities in Situation 4 in the significance level study,
the high power displayed by X2

st is seriously undermined.

When considering the aforementioned insights, Stukel’s score test statistic and Stukel’s
LRT1 and LRT2 statistics, appear to be the best all-round alternatives. The LRT statistics
performed identically in all the models for all sample sizes. When comparing Stukel’s
score test statistic to the LRT test statistics, the score test statistic had the highest frequency
of greater power. Furthermore, the score test statistic had a much more ideal empirical
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significance level in Situation 2, and in Situation 4 its α̂4 were very similar to those of Stukel’s
LRT1 and LRT2 statistics (recall the notes on the distributions of π̂ππ j in Section 4.3.4). Hence
Stukel’s score test appears to be the better choice if there is suspicion of a different true
link function than the specified logit link, though the USS test is also powerful in multiple
settings.

Hosmer et al. (1997) noted that the tails contain only a small proportion of total amount
of estimated probabilities, and that it is mostly in the tails one finds the differences between
the correct links in the true models MTj and the logit link. I.e. there are relatively few
observations in the area where the differences are the most pronounced. In addition, the
expression π̂i(1− π̂i) is central in the computation of multiple GOF statistics and, as indicated
in Section 3.4, this expression is larger for estimated probabilities close to 0.5.

The tests using standardisation methods, X2
st and Ŝst, were more susceptible to performing

poorly when the logit link function was very similar to the correct link function in the region
around π ji = 0.5. The estimations of the variance of the Pearson statistic and the standardised
USS statistic are influenced by the range of π̂ ji and how clustered the π̂ ji are around 0.5.

The analogous performances for the two asymmetric tails models makes sense considering
that the differences between the true link and the logit link (occurring in the tails) are similar
in magnitude. The only distinction between the models when looking at Figure 4.4a is that
the tails of the true mean function (or probability curve) are above the logistic probability
curve in one model, and below the logistic probability curve in the other. This substantiates
the claim that the most central characteristic, regarding whether a GOF test recognises that
the link function is misspecified, is how the logistic mean function compares to the correct
link function in the area around π ji = 0.5.

5.2.5 Summary and recommendations

When using the Osius and Rojek standardisation method, the standardised Pearson test is
unstable and not recommended as a GOF test. Almost all cases where X2

st was more powerful
than the other tests coincided with distributions of π̂i which were very similar to situations in
the significance level study were X2

st much too large rejection rates.

In general, one should take into account how the estimated probabilities of one’s model
are distributed and determine whether: (1) the estimated probabilities are mostly clustered
around 0.5; and (2) are they highly skewed, but still have enough observed values close to 0.5
to inflate the classic Pearson chi-square statistic? How to quantify what "enough" observed
values of the estimated logistic probabilities is a topic which should be investigated in future
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studies.





Chapter 6

Data Analysis

6.1 Background

Risk stratifying patients and predicting mortality is important in a clinical setting with patients
in need of critical care. There are many advantages to adequately modelling vital status at
time of discharge using measures that reflect a patients physiological status and mortality risk
when admitted to the ICU. Avoiding premature discharges, for example, may reduce costs
for the hospitals and be beneficial to patient survival and recovery (Sluisveld et al., 2017).

Many hospitals have limited ICU capacity and must therefore prioritise their resources.
Situations may arise where an ICU does not have the resources to provide optimal care for
all their patients and transferrals to other units is not possible (Scales and Rubenfeld, 2014).
Resource allocation in these unwanted settings should be fair and the inclusion criteria for
receiving certain interventions should be supported by established evidence based models.

The Simplified Acute Physiology Score (SAPS) II, is a illness severity score calculated
from information gathered post hospitalisation. This information includes variables such as
temperature, systolic blood pressure, heart rate, age, type of admission, AIDS, and metastatic
cancer (Moseson et al., 2014). Logistic regression models have been developed to assess
effects of the SAPS II score on in-hospital mortality. These are mortality prediction models
and have applications in assessing the performance of an ICU, assessing a patient’s risk of
death during the ICU stay, and also in quality control of clinical trials.

Two such mortality prediction models are the original SAPS II model introduced by
Le Gall et al. (1993) and the modified SAPS II model presented by Haaland et al. (2014).
The latter model was the result of the first time the original SAPS II model was recalibrated
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for data from a Nordic country. Le Gall et al. (1993) used vital status at hospital discharge as
an endpoint to develop the SAPS II score itself, and fitted a mortality prediction model with
the score as the explanatory variable.

A few years have passed since the model in Haaland et al. (2014) was developed using data
collected by the Norwegian Intensive Care Registry (NIR). During this time, the population of
intensive care patients may have changed (a larger proportion of older patients, for example),
individual ICU performance may have improved, and there may have been significant benefits
to new medical methods and technologies. It seems reasonable that the SAPS II model should
be modified every 2-3 years (Haaland et al., 2014).

There are many possible consequences of poorly calibrated SAPS II score models.
Resource allocation guidelines in extraordinary events such as mass casualties may be
inadvertently unfair as a result. It is also possible that poor risk estimates can affect hospital
budgets, and also give the erroneous impression that an ICU performs better, or worse, than
previously or compared to other ICUs. Hence there is a need for evaluating, every so often,
if the SAPS II model in use adequately fits the current population of patients.

In this thesis, we will carry out a study where the SAPS II model is fitted to a recent NIR
data set with cohorts from 2016 and 2017. An evaluation of how well previously calibrated
SAPS II score models predict ICU mortality in a recent data set, compared to our own version
of those models will be conducted. We will also examine whether adding an additional
explanatory variable to this model improves the fit to the sample data, and thus perhaps an
improvement in regards to predicted risk of mortality. This additional variable is a binary
covariate indicating whether a patient was admitted due to an acute non-surgical medical
event or not.

6.2 The Data Set

This was a registry based study, where the data were provided by NIR. NIR is a Norwegian
national quality registry which covers more than 90% of adult patient admissions to Norwe-
gian ICUs. NIR collect data from over 40 intensive care units across the country which are
distributed over 38 hospitals. This include both university hospitals, secondary hospitals, and
primary hospitals. According to their annual report for 2017, they collected records of 13737
patients comprised of nearly 1.5 million hours of patient treatment spread over 49 different
intensive care units.
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Table 6.1 Patient characteristics

Patient characteristic All patients ≥≥≥ 18 years old Study sample

n 30,212 30,177

Age (years)
Missing 0 0
Mean (sd) 64.7 (17.2) 64.7 (17.1)
Q1 56 56
Median 68 68
Q3 77 77

Sex
Missing 0 0
Female, % 42.3% 42.3%

SAPS II score
Missing 35 -
Mean (sd) 38.1 (17.4) 38.1 (17.4)
Q1 26 26
Median 36 36
Q3 48 48

Type of admission
Missing 2 -
Acute medical, % 65.6% 65.7%
Planned surgery, % 22.9% 22.9%
Acute surgery, % 11.5% 11.4%

Vital status at ICU discharge
Missing 2 -
Died during ICU stay, % 10.4% 10.4%
Survived ICU stay, % 89.6% 89.6%

Characteristics of all the patients aged 18 years or older, and the patients in the study sample.
The 35 patients with missing observations of SAPS II score, type of admission, or vital status
at ICU discharge, were excluded from the study sample/population. These characteristics
were mostly unchanged by the exclusion of these 35 patients.
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The source dataset we received from NIR contained records of 30,212 patients, of at least
18 years of age, who were admitted during 2016 or 2017. Re-admissions, admissions of
patients transferred from other hospitals, and transfers from a different intensive care unit
within the same hospital, were not excluded. The dataset is sizeable despite the registry
seeing a decrease in admittance is in 2016.

35 admittances were excluded from the study sample due to missing SAPS II score, type
of admission, and/or vital status at discharge from the ICU. The patient characteristics in the
source data set and the study sample are presented in Figure 6.1. As can be seen in the table
with patient characteristics, this exclusion barely affected the distribution of the study sample
variables the study sample contained 30,177 observations of ICU stays.

6.3 Methods

6.3.1 The models

Three logistic regression models were specified in this study: Model A, Model B and Model
C. In Model A, the SAPS II score was the only covariate. The specified linear predictor of
Model A was

ηA = β0 +β1(SAPS II), (6.1)

with covariate effect β1 and intercept β0. This linear predictor is used to compute the
predicted risk of death (PRD) in Model A, defined as

PRDA = π(ηA) =
eηA

1+ eηA
, (6.2)

using the standard logistic function due to the logit link of the logistic regression model.
Thus, once the parameters are estimated, we will have a function with which we can predict
ICU mortality based on a given SAPS II score.

Model B was based on Model A, but with an added log-transformed covariate, namely
log(SAPS II+ 1) to allow for non-linearity of the linear predictor. The specified linear
predictor of Model B was

ηB = β0 +β1(SAPS II)+β2 log(SAPS II+1), (6.3)
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with intercept β0 and covariate effects β1 and β2. The linear component, ηB, is used to
compute the predicted risks of death according to Model B.

The PRD in Model B, PRDB = π(ηB), is defined using the standard logistic function in
the same manner as in (6.2). Once Model B has been fitted, it will be possible to compare
PRDB to the predicted risk of ICU mortality from the other models.

Model C was based on Model B, but with an added binary covariate. The additional
binary covariate, called acute medical admission (AMA), was derived from the type of
admission variable specifically for this study. In the analysis, AMA is takes on the value
1 = "yes" when the stay at the ICU was due to an acute medical admission (non-operative),
and the value 0 = "no" if the admission was in conjunction with a planned or acute surgery
(operative).

The intuition behind this was the assumption that acute medical admission may have a
larger tendency toward ending with hospital mortality. When a patient is already admitted
to a hospital before the event necessitating an ICU admission, there are factors which are
less likely to be of concern. These factors may include incidences of severe traumatic injury,
unknown patient identity and health conditions such as allergies, ambulance response time,
and other pre-hospital factors.

The linear predictor specified for Model C was

ηB = β0 +β1(SAPS II)+β2 log(SAPS II+1)+β3(AMA), (6.4)

with intercept β0, main covariate effects β1 and β3, and the effect of the log term β2. The
predicted risk of ICU mortality in Model C is defined using the same link function as Model
A and Model B, where PRDC = π(ηC) = eηC/1+eηC . Thus once the parameters are estimated,
we can predict ICU mortality based on a given SAPS II score and whether the ICU admission
was non-operative or not.

Model B is identical (i.e. it uses the same link function and form of its linear predictor)
to the original SAPS II model specified by Le Gall et al. (1993). Over 20 years ago, Le Gall
et al. (1993) estimated the parameters of the original SAPS II model (βββ D = [βD0 βD1 βD2]

T)
based on an international data set with 13,152 patients to provide a method of predicting
vital status as hospital discharge.
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We will refer to the original SAPS II model and its estimated parameters as Model D.
The fitted linear predictor of Model D is

η̂D =−7.7631+0.0737(SAPS II)+0.9971log(SAPS II+1), (6.5)

and the estimated PRD based on η̂D is defined as PRDD = eη̂D/(1+eη̂D).

As noted by Haaland et al. (2014), Model D is not optimally fitted for mortality predictions
in present-day populations because the estimates of βββ D are based on more than two decade
old data. Using a data set consisting of the 2008-2010 cohorts from NIR, Haaland et al.
(2014) fitted the following model, referred to as Model E,

η̂E =−9.0917+0.0325(SAPS II)+1.6698log(SAPS II+1), (6.6)

which had more accurate predictions of ICU mortality than Model D. These estimated ICU
mortality predictions are defined as PRDE = eη̂E/(1+eη̂E ).

It is expected that Model B will result in different parameter estimates compared to that
of Model D and Model E. The data set used by Le Gall et al. (1993) is different in several
ways, both in terms of time frame and geographical hospital locations. The sample of NIR
data used to estimate βββ E = [βE0 βE1 βE2]

T in Model E does not overlap with the study
sample analysed in this thesis, which is restricted to admissions in 2016 and 2017.

In addition, the sample used by Haaland et al. (2014) did not include 2552 patients
(around 6% of the source population) due to them being readmitted to the same or different
ICU multiple times during one patient care process. The variables needed to filter in this
manner were not available during the development of this thesis. Hence a small fraction of
the response variables in the study sample are likely to be dependent.

6.4 Statistical analysis

All seven goodness-of-fit (GOF) statistics from Chapter 2 were applied to the models in
Section 6.3.1. The power simulation study indicated that the GOF tests had low power
when a specified model had omitted a log term for n ≤ 1000. In the simulation studies, we
mentioned that for simulated data sets where n = 10,000, the power of the IMT statistics and
the three Stukel’s statistics to detect an omitted log term was reasonably high when the effect
of the omitted term, i.e. the parameter, was greater than 1.
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The remaining two statistics, the standardised Pearson and standardised USS test statistic,
had considerable poorer power in the same n = 1000 simulations. Since we have over 30,000
observations in our study sample, we do not expect Stukel’s LRT1 and LRT2, and Stukel’s
score test, to overrate model adequacy when evaluating the fit of Model A. It was expected
that the p-values produced by Stukel’s score test statistic, Stukel’s LRT1 and LRT2, IMT 1,
and IMT 2 (when testing H0 that Model A is correct) would be smaller than those resulting
from the standardised Pearson test and the USS test, i.e. that X2

st and Ŝst would be less
discerning or anti-conservative.

All of the goodness of fit tests performed sub-optimally when the main effect of a binary
covariate and its interaction with a continuous covariates was omitted. Since Model C has no
interaction term, there is no clear comparison we can make to the departure types studied in
the power study. Hence there are no clear indications from the simulation studies of how the
GOF tests will perform when applied to the risk estimates of model C. However, we can look
at the distributions of the estimated mortality risks, and bear in mind how the test statistics
performed when applied to similarly distributed estimated probabilities in Chapters 3 and 4.

6.5 Results

The parameters of Model A, Model B, and Model C, were fitted on the same data set using
the glm() function in R. Figure 6.1 shows the histograms of the estimated probabilities (or
predicted mortalities) in each of the three models. These plots are included for comparison
to the estimated probabilities in the significance level study and the power study.
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Fig. 6.1 Histograms of the estimated probabilities of Model A, Model B, and Model C.
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The estimated linear predictor of Model A was

η̂A =−5.6101+0.0745(SAPS II). (6.7)

The estimated linear predictor of Model B was

η̂B =−12.0832+0.0310(SAPS II) (6.8)

+2.2311log(SAPS II+1).

The estimated linear predictor of Model C was

η̂C =−12.1799+0.0308(SAPS II) (6.9)

+2.2164log(SAPS II+1)+0.2309(AMA).

From visually assessing the histograms belonging to Model A, Model B, and Model C,
we see that they are highly right skewed, and arguably comparable in shape to the histogram
of π̂i in Situation 11 in Figure 3.3b. None of the example histograms of fitted probabilities in
the power study are considered reasonably similar to that of the three models in this study of
NIR data.

The resulting estimated logistic regression coefficients of Model A, Model B, and Model
C, along with their respective p-values, Akaike’s information criteria (AICs), and residual
deviances, are given in Table 6.2. In all three models, every covariate is significant according
to the chi-square tests performed in R.

In addition, the AIC for Model B is smaller than for Model A, supporting the claim that
the linear predictor form suggested by Le Gall et al. (1993) is more appropriate than Model A.
Examining Figure 6.2a, shows that the upper tail of Model B has a closer fit to the observed
mortalities of patients with a particular SAPS II score. Model B also appears to fit the data
better for SAPS II scores less than 75.

When adding the binary variable AMA, the AIC is even smaller than for Model B, hence
suggesting that patients admitted due to non-surgical related medical events have a higher
risk of not surviving an ICU stay. This is illustrated by Figure 6.2b, where we see that the
curve for P̂RDC = π(η̂C) given AMA= 1 is higher than P̂RDC given AMA= 0.

The predicted risk of ICU mortality according to Model D from Le Gall et al. (1993) and
the more current Model E from Haaland et al. (2014) were plotted against P̂RDB in each
their own plot. Figure 6.3a shows that Model D grossly overestimates the ICU mortality risk
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Table 6.2 The estimation results of Model A, Model B, and Model C.

Model A Model B Model C

β̂0 (std. error) -5.6101 (0.0686), -12.0832 (0.8978), -12.1799 (0.9010),
p-value < 2.0×10−16 p-value < 2.0×10−16 p-value < 2.0×10−16

β̂1 (std. error) 0.0745 (0.0012), 0.0310 (0.0059 ), 0.0308 (0.0060),
p-value < 2.0×10−16 p-value = 1.65×10−7 p-value = 2.21×10−7

β̂2 (std. error) NA 2.2311 (0.3050), 2.2164 (0.3060),
p-value = 2.55×10−13 p-value = 4.37×10−13

β̂3 (std. error) NA NA 0.2309 (0.0483),
p-value = 1.71×10−6

AIC 15420.15 15360.27 15338.90

Residual deviance 15416.15 15354.27 15330.9

for the NIR study sample. In fact, the only observations P̂RDD appears to approximate with
some adequacy are the cases with patient with very high SAPS II scores.

As one would expect from a model fitted to a presumably comparable population, the
predicted risk of ICU mortality from Model E in Figure 6.3b shows that Model E is much
more similar to Model B than Model D in terms of predicted ICU mortality risk for our study
sample. Nevertheless, P̂RDE overestimates the mortality risk for the population in this study.

These differences may also in part be attributed to the possibility that the endpoints we
received from NIR were vital status at time of discharge from ICU, whereas Le Gall et al.
(1993) and Haaland et al. (2014) describe their endpoints as "hospital mortalities" or "vital
status at hospital discharge", which may refer to a later point in time during a hospital stay
than vital status at ICU discharge.

The p-values resulting from the GOF tests, accompanied by the observed test statistic
and degrees of freedom where appropriate, are listed in Table 6.3. These results show that all
seven GOF tests prefer Model B over Model A, since all the p-values are substantially larger
for Model B. It is encouraging that the USS test, Stukel’s score test, Stukel’s LRT1, and
Stukel’s LRT2, would not have rejected Model B as the correct model at the 5% significance
level, and that all the tests would have rejected the fit of Model A at even smaller significance
levels. It is worth noting that Stukel’s LRT2 had a higher p-value than Stukel’s LRT1 for
Model B, whereas they were approximately equal for Model A.

Table 6.3 does not, however, indicate that the fit of Model C is better than Model B,
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despite the AIC’s preference. All the GOF tests, except the USS test, would reject the fit of
Model C at the 5% significance level. The only test which preferred Model C over Model B
was the standardised Pearson test, which is not promising for the adequacy of Model C in
view of the results highlighted in Chapter 5.

The standardised Pearson test had a relatively large p-value compared to the other tests.
This finding confirms part of our expectations from Section 6.4, but rather surprisingly,
the USS statistic’s p-value was the third smallest out of the seven statistics. This was
unanticipated due to how the USS test performed in the power study in Chapter 4.
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Fig. 6.2 The predicted hospital mortalities of the different models. The diameter of the circles
reflect the number of observed patients with a particular SAPS II score, and its vertical
placement shows the observed mortality for the patient(s) with that particular SAPS II score.
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(a) SAPS II vs. mortality. The pink line represents the hospital mortality predicted by
Model B, and the blue line is the predicted hospital mortality from Model D.
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(b) SAPS II vs. mortality. The pink line represents the hospital mortality predicted by
Model B, and the blue line is the predicted hospital mortality from Model E.

Fig. 6.3 A comparison of the predicted hospital mortalities from Model B vs. Model D,
Model B vs. Model E, applied to the study’s 2016-2017 NIR data set. The diameter of the
circles reflect the number of observed patients with a particular SAPS II score, and its vertical
placement shows the observed mortality for the patient(s) with that particular SAPS II score.
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