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Background: Most clinical machine learning applications use a supervised learning approach using labeled variables. In contrast,
unsupervised learning enables pattern detection without a prespecified outcome.

Purpose/Hypothesis: The purpose of this study was to apply unsupervised learning to the combined Danish and Norwegian
knee ligament register (KLR) with the goal of detecting distinct subgroups. It was hypothesized that resulting groups would
have differing rates of subsequent anterior cruciate ligament reconstruction (ACLR) revision.

Study Design: Cohort study; Level of evidence, 3.

Methods: K-prototypes clustering was performed on the complete case KLR data. After performing the unsupervised learning
analysis, the authors defined clinically relevant characteristics of each cluster using variable summaries, surgeons’ domain knowl-
edge, and Shapley Additive exPlanations analysis.

Results: Five clusters were identified. Cluster 1 (revision rate, 9.9%) patients were young (mean age, 22 years; SD, 6 years),
received hamstring tendon (HT) autograft (91%), and had lower baseline Knee injury and Osteoarthritis Outcome Score
(KOOS) Sport and Recreation (Sports) scores (mean, 25.0; SD, 15.6). Cluster 2 (revision rate, 6.9%) patients received HT autograft
(89%) and had higher baseline KOOS Sports scores (mean, 67.2; SD, 16.5). Cluster 3 (revision rate, 4.7%) patients received
bone–patellar tendon–bone (BPTB) or quadriceps tendon (QT) autograft (94%) and had higher baseline KOOS Sports scores
(mean, 65.8; SD, 16.4). Cluster 4 (revision rate, 4.1%) patients received BPTB or QT autograft (88%) and had low baseline
KOOS Sports scores (mean, 20.5; SD, 14.0). Cluster 5 (revision rate, 3.1%) patients were older (mean age, 42 years; SD, 7 years),
received HT autograft (89%), and had low baseline KOOS Sports scores (mean, 23.4; SD, 17.6).

Conclusion: Unsupervised learning identified 5 distinct KLR patient subgroups and each grouping was associated with a unique
ACLR revision rate. Patients can be approximately classified into 1 of the 5 clusters based on only 3 variables: age, graft choice
(HT, BPTB, or QT autograft), and preoperative KOOS Sports subscale score. If externally validated, the resulting groupings may
enable quick risk stratification for future patients undergoing ACLR in the clinical setting. Patients in cluster 1 are considered high
risk (9.9%), cluster 2 patients medium risk (6.9%), and patients in clusters 3 to 5 low risk (3.1%-4.7%) for revision ACLR.
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Machine learning represents an increasingly used
approach within the orthopaedic literature due to the abil-
ity to process large volumes of complex data and develop
clinically useful diagnostic, prognostic, or data collection

models.30,32 The 3 main categories of machine learning
approaches are supervised learning, unsupervised learn-
ing, and reinforcement learning. Most of the orthopaedic
studies to date have applied a supervised learning
approach, referring to the analysis of labeled data. In the
supervised learning approach, the computer algorithm is
provided with variables that are labeled as either a ‘‘predic-
tor’’ or an ‘‘outcome,’’ and the model is tasked with predict-
ing a specified outcome. In contrast, unsupervised learning
involves the analysis of unlabeled data whereby the model
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is tasked with independently finding patterns in the data
set. This process enables the interpretation and simplifica-
tion of highly complex data through the identification of
hidden structures and patterns.7

Within orthopaedic research, unsupervised learning
approaches have recently been used to stratify groups of
patients according to their risk of hip osteoarthritis pro-
gression17 and to identify subphenotypes of osteoarthritis
based on blood-based biochemical markers.2 These exam-
ples highlight how a novel approach to a common problem
can provide insight into the factors associated with com-
plex clinical conditions. Outcome after anterior cruciate
ligament (ACL) injury and subsequent ACL reconstruction
(ACLR) is one such example of a clinical condition that
evades complete understanding, despite troves of litera-
ture on the subject. Studies from the national knee liga-
ment registers, Multicenter Orthopaedic Outcomes
Network, and others have helped identify age, activity
level, graft choice, fixation device, and posterior tibial slope
as some factors that influence failure risk.5,10,16,28,29,34,41

Despite recognition of these and other risk factors for
a poor outcome,11,19,25,35 along with recent advancements
in surgical decision-making and techniques,6,8,27,33,39

highly accurate clinical prediction models remain elusive.
One constraint to accurate patient-specific outcome predic-
tion is the sheer volume of risk factors that may contribute
to a patient’s outcome and, specifically, the limited ability
to synthesize the complex and often unrecognized interac-
tions between these factors.

The Norwegian Knee Ligament Register (NKLR) and
Danish Knee Ligament Reconstruction Registry (DKRR)
have been prospectively collecting data related to ACLR in
their respective countries for nearly 20 years.9,31 Since their
inception, these national registers have produced several
studies on ACL treatment and outcomes and have recently
developed preliminary outcome prediction models using
supervised machine learning methodology.15,20-23 The pres-
ent study sought to further investigate the factors associ-
ated with subsequent ACLR revision through the
application of unsupervised learning techniques to the com-
bined Norwegian and Danish knee ligament register (KLR).
The primary goal of this analysis was to identify distinct

subgroups of patients within the registers and determine
if the rate of subsequent revision ACLR differs between
the patient clusters. The hypothesis was that unsupervised
learning would facilitate the grouping of patients based on
common characteristics and that this would enable the iden-
tification of high- and low-risk groups of patients.

METHODS

Ethics

Informed consent was obtained prospectively from all
patients enrolled in the NKLR and the Norwegian Data
Inspectorate grants permission for the NKLR to collect,
analyze, and publish on these health data. Data registra-
tion was performed according to European Union data pro-
tection rules, with all data deidentified before retrieval.
The regional ethics committee stated that further ethics
approval was not necessary.9 Similarly, the DKRR pro-
spectively obtained informed consent at the time of enroll-
ment and patient data were deidentified before retrieval
with no further ethics approval required.

Data Preparation

Patients with primary ACLR surgery dates from June
2004 through December 2020 were included. Patients
with missing values for graft choice, those with graft choice
recorded as ‘‘direct suture,’’ and those with missing values
for the indicator of revision surgery were excluded. Varia-
bles contained within the combined KLR and considered
for analysis are shown in Table 1.

The activity that reportedly led to ACL injury was clas-
sified as a pivoting sport, nonpivoting sport, or other activ-
ity. Meniscal injuries were classified as present with
repair, present without repair (no treatment or partial
meniscectomy), or no meniscal injury. Cartilage injuries
were grouped according to the International Cartilage
Regeneration & Joint Preservation Society grading system
and recorded as grade 1 or 2, grade 3 or 4, or no cartilage
injury. Additionally, a predictor indicating if a patient
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TABLE 1
Patient Characteristicsa

Variable Combined Data, n = 62,955 Complete Case Data, N = 28,631

Revision 3205 (5.1) 1770 (6.2)
Mean follow-up time or time to revision, y 7.6 6 4.5 8.2 6 4.5
Mean age at surgery, y 28 6 11 28 6 10
Mean age at injury, y 27 6 10 27 6 10

Missing 1870
Sex

Male 36,509 (58) 15,671 (55)
Female 26,446 (42) 12,960 (45)

Mean presurgery KOOS QOL score 36.3 6 18.0 36.5 6 17.9
Missing 29,512

Mean presurgery KOOS Sports score 41.2 6 26.9 41.2 6 26.8
Missing 29,708

Below median on all presurgery KOOS Subscales 6372 (19) 5259 (18)
Missing 29,323

Activity that led to injury
Nonpivoting 20,391 (33) 8175 (29)
Pivoting 35,851 (57) 16,747 (58)
Other 6162 (9.9) 3709 (13)
Missing 551

Meniscal injury
Injury without repair 20,328 (32) 9568 (33)
Injury with repair 10,554 (17) 4640 (16)
None 32,061 (51) 14,423 (50)
Missing 12

Cartilage injury (ICRS grade)
1 or 2 8766 (14) 4195 (15)
3 or 4 3223 (5.1) 1627 (5.7)
None 50,878 (81) 22,809 (80)
Missing 88

Graft choice
BPTB 15,639 (25) 9000 (31)
Hamstring 43,518 (69) 18,356 (64)
QT/BQT 2520 (4.0) 888 (3.1)
Other 1278 (20) 387 (1.4)

Tibial fixation device
Interference screw 55,792 (90) 25,759 (90)
Suspension/cortical device 3643 (5.9) 2031 (7.1)
Other 2356 (3.8) 841 (2.9)
Missing 1164

Femoral fixation device
Interference screw 16,434 (27) 8793 (31)
Suspension/cortical device 39,742 (65) 17,502 (61)
Other 4822 (7.9) 2336 (8.2)
Missing 1957

Fixation device combination
Interference screw 3 2 15,865 (26) 8467 (30)
Interference/suspension 236 (0.4) 150 (0.5)
Suspension/cortical device 3 2 2994 (4.9) 1540 (5.4)
Suspension/interference 34,895 (58) 15,493 (54)
Other 6529 (11) 2981 (10)
Missing 2436

History of previous surgery on same kneeb 10,312 (17) 4540 (16)
Missing 673

History of previous cruciate ligament injury to opposite kneeb 4839 (8.1) 1977 (6.9)
Missing 2946

(continued)
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was below the median score in the respective register on all
presurgery Knee injury and Osteoarthritis Outcome Score
(KOOS) variables was also created.

Missing Data

A previous study applying supervised machine learning
models to the combined KLR data guided the approach to
missing data for this study.20 Briefly, supervised learning
models were trained and evaluated using complete data
on all variables. This was then repeated using multiple
imputation to assess the effect of restricting data to com-
plete cases. This is a common technique for dealing with
missing data that fills in incomplete values based on pat-
terns in the data. Multiple imputation allowed the assess-
ment of the reasonableness of restricting the analysis to
complete cases and found that multiply imputed data
were not notably different from the complete case analysis.
This means that there was no meaningful advantage of
data imputation for the predictive modeling. Therefore,
for this study only patients with complete data on all pre-
dictors were included in the analysis.

Unsupervised Learning

The machine learning methods used in this analysis were
all unsupervised, meaning the models were not trained to
produce predictions for a specific outcome variable.
Instead, unsupervised methods model how the data were
organized with respect to a given set of predictor varia-
bles.13 The applied unsupervised methods produced
groups, or clusters, of observations with similar relation-
ships among the predictor variables. Because unsuper-
vised learning does not train and then test predictions,
the sample was not split. The entire sample of patients
was used to build the unsupervised models and character-
ize the resulting clusters. All analyses were conducted in R
(Version 4.1.1; R Core Team).

Three unsupervised clustering methods were applied:
k-means (function kmeans; package stats), agglomerative
hierarchical clustering (function hclust; package fastclus-
ter26), and k-prototypes (function kproto; package

clustMixType36). K-means clustering required the user to
prespecify the number of clusters. The algorithm then
grouped the observations to minimize the sum of squares
from points to the cluster centers.12 To determine the num-
ber of clusters (k), a common technique called the elbow
method was used. In this approach, clusters were computed
for various possible values of k, and the within-cluster sums
of squares were calculated and plotted against the value of
k. The point at which this line bent sharply upward (the
elbow) dictated the optimal number of clusters (Figure 1).

This represented the fewest clusters that could be cre-
ated without a sharp increase in within-cluster heteroge-
neity.38 Agglomerative hierarchical clustering began with
each observation in its own cluster and yielded many pos-
sible partitions of decreasing complexity, requiring the
user to select a level of complexity (by specifying a desired
number of clusters).

K-means and agglomerative hierarchical clustering
only accommodates continuous predictor variables. To
overcome this limitation, a third method, k-prototypes,

TABLE 1
(continued)

Variable Combined Data, n = 62,955 Complete Case Data, N = 28,631

Median time injury to surgery, y 1.63 [0.33-1.32] 0.61 [0.33-1.29]
Missing 2083

Register
DKRR 34,554 (55) 10,487 (37)
NKLR 28,401 (45) 18,144 (63)

aData are presented as n, n (%), mean 6 SD, or median [IQR]. BPTB, bone–patellar tendon–bone autograft; DKRR, Danish Knee Liga-
ment Register; ICRS, International Cartilage Regeneration & Joint Preservation Society; KOOS, Knee injury and Osteoarthritis Outcome
Score; NKLR, Norwegian Knee Ligament Register; QOL, Quality of Life subscale; QT/BQT, quadriceps tendon autograft, with or without
bone; Sports, Sport and Recreation subscale.

bSurgery performed before primary anterior cruciate ligament reconstruction and enrollment in the register.

Figure 1. The elbow method to determine the number of
clusters for unsupervised learning analysis. The location
where the line bends sharply upward (circle) signifies the
elbow, representing the optimal number of clusters.
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which accommodated mixed type predictors, was used. K-
prototypes is similar to k-means in that it minimizes
within-cluster distance from the cluster mean when assign-
ing observations to a prespecified number of clusters. The
distance metric was a weighted combination of Euclidean
distance for continuous variables and the count of mis-
matched category labels for categorical variables. A data-
driven technique was used to select the weighting parame-
ter. The cluster ‘‘mean’’ was the mean for continuous varia-
bles and the mode for categorical variables. The elbow and
silhouette methods were used to define the optimal number
of k-prototypes clusters. The silhouette method identified
the number of clusters that maximized between-cluster
and minimized within-cluster dissimilarity.36

Measures of Cluster Quality

Unlike with supervised learning where models are trained on
a training set and evaluated against observed labels on a test
set, with unsupervised learning there are no labels for com-
parison. Assessing the quality of model results is therefore
more challenging and typically relies on heuristic arguments
and domain knowledge.13 Therefore, a combination of 2 data-
driven methods (elbow and silhouette) and domain knowledge
was used to choose the number of clusters.

Model Interpretability and Clinical Relevance

To identify the defining characteristics of each cluster, 7
orthopaedic surgeons (R.K.M., A.Pareek., A.Persson.,
H.V., G.M., M.L., L.E.) with subspecialty training in sports
medicine reviewed the patient groups and highlighted the
clinically relevant features based on their domain knowl-
edge and variable summaries. The goal was to define
each cluster in terms that would enable the assignment
of future patients to 1 of the 5 clusters. To aid in cluster
interpretation, SHapley Additive exPlanations (SHAP)
analysis was also performed.18 This required a 2-step pro-
cess: (1) build a classification model predicting clusters
from input variables and (2) compute SHAP values for
this classification model. First, a gradient boosting model
was trained to predict the cluster number using all predic-
tor variables originally used for clustering (R package
xgboost). Gradient boosting is a tree-based machine learn-
ing method that can be used for classification with multiple
classes, such as in this situation.4 Next, SHAP values were
computed for this model using built-in functions in the
xgboost package. The SHAP values explained the contribu-
tions of input variables in each cluster by summarizing
their influence on individual predictions. Cluster-specific
Kaplan-Meier curves were created to describe each clus-
ter’s mean risk of revision surgery.

RESULTS

Participants

After data cleaning, a process whereby incorrect, duplicate,
or incomplete data were removed or corrected, the

combined register population consisted of 62,955 patients,
55% from the DKRR and 45% from the NKLR. The primary
outcome, revision surgery, occurred in 5.1% of patients
during a mean follow-up time of 7.6 years (SD, 4.5 years).
The population was 55% male with median ages at primary
injury and surgery of 24 years (IQR, 18-34 years) and 26
years (IQR, 20-36 years), respectively. After removing
patients with missing predictor variables, the study popu-
lation consisted of 28,631 patients. Characteristics of the
study population at the time of surgery along with the com-
plete case data set are presented in Table 1.

Clustering Results

The k-prototypes method was chosen because it accommo-
dated both continuous and categorical predictors. The opti-
mal number of clusters was set at 5 via a combination of
the data-driven elbow and silhouette methods and domain
knowledge (Figure 1). A description of the 5 clusters is pre-
sented in Table 2 and Figure 2. Figure 3 presents the
SHAP values for all clusters. Cluster-specific Kaplan-
Meier curves demonstrating the revision risk profiles for
the 5 patient groups are presented in Figure 4.

Surgeon domain knowledge and SHAP values were
used to interpret the variable summaries and simplify
the distinguishing characteristics of each cluster for clini-
cal relevance. Cluster 1 (revision rate, 9.9%) patients
were young (mean age, 22 years; SD, 6 years) and more
often female (60%), received hamstring tendon (HT) auto-
graft (91%), and had lower baseline KOOS Sport and Rec-
reation (Sports) scores (mean, 25.0; SD, 15.6). Cluster 2
(revision rate, 6.9%) patients received HT autograft
(89%), were more often male (68%), and had higher base-
line KOOS Sports scores (mean, 67.2; SD, 16.5). Cluster
3 (revision rate, 4.7%) patients received bone–patellar ten-
don–bone (BPTB) or quadriceps tendon (QT) autograft
(94%) and had higher baseline KOOS Sports scores
(mean, 65.8; SD, 16.4). Cluster 4 (revision rate, 4.1%)
patients received BPTB or QT autograft (88%) and had
low baseline KOOS Sports scores (mean, 20.5; SD, 14.0).
Cluster 5 (revision rate, 3.1%) patients were older (mean,
42; SD, 7 years), underwent ACLR with HT autograft
(89%), and had low baseline KOOS Sports scores (mean,
23.4; SD, 17.6).

DISCUSSION

The most important finding of this study was that unsu-
pervised learning analysis of the combined KLR identified
5 distinct patient subgroups among patients undergoing
primary ACLR, which are clinically distinguishable based
on age, graft type, and baseline KOOS Sports score. Each
grouping was associated with its own unique rate of subse-
quent ACLR revision. If externally validated, the results of
this analysis could be applied in the clinical setting to clas-
sify patients into 1 of the 5 clusters. This would enable
rapid estimation of the risk of subsequent revision ACLR
and could be used to guide preoperative discussions and
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surgical decision-making with patients undergoing pri-
mary ACLR.

To our knowledge, this is the first unsupervised learn-
ing analysis of an ACLR database. Unsupervised learning
is a useful adjunct to clinical risk prediction efforts, as it
may find patterns in data sets like the KLR without man-
ual specification, which can be used to guide decision-
making and prognostication.7 Unsupervised learning

models consider all variables in the data set that are cate-
gorized as predictors and are blind to the outcome for each
patient (in this case, revision surgery). The algorithm is
then tasked with finding common groups of patients within
the data set, breaking them into different clusters. These
clusters are arrived upon through complex analysis that
is not explicitly directed by human instruction. Once the
clusters have been identified, the outcome can be assessed

TABLE 2
Characteristics of Clusters Using k-Prototypes Methoda

Variable
Cluster 1,
n = 7038

Cluster 2,
n = 7693

Cluster 3,
n = 4118

Cluster 4,
n = 4852

Cluster 5,
n = 4930

Revision 695 (9.9) 532 (6.9) 193 (4.7) 198 (4.1) 152 (3.1)
Mean follow-up time or time to revision, y 8.2 6 4.3 8.5 6 4.3 7.5 6 4.8 8.0 6 5.0 8.8 6 4.2
Mean age at surgery 22 6 6 25 6 9 25 6 9 30 6 10 42 6 7
Mean age at injury 21 6 6 24 6 8 23 6 8 28 6 9 40 6 8
Sex

Male 2808 (40) 5198 (68) 2473 (60) 3036 (63) 2156 (44)
Female 4230 (60) 2495 (32) 1645 (40) 1816 (37) 2774 (56)

Mean presurgery KOOS QOL score 29.7 6 13.9 49.1 6 16.1 47.6 6 15.7 25.5 6 13.4 28.4 6 14.4
Mean presurgery KOOS Sports score 25.0 6 15.6 67.2 6 16.5 65.8 6 16.4 20.5 6 14.0 23.4 6 17.6
Below median on all presurgery KOOS Subscales 1852 (26) 0 (0) 0 (0) 1738 (36) 1669 (34)
Activity that led to injury

Nonpivoting 1524 (22) 1746 (23) 931 (23) 1069 (22) 2905 (59)
Pivoting 4863 (69) 5273 (69) 2730 (66) 2796 (58) 1085 (22)
Other 651 (9.2) 674 (8.8) 457 (11) 987 (20) 940 (19)

Meniscal injury
Injury without repair 2182 (31) 2467 (32) 1277 (31) 1723 (36) 1919 (39)
Injury with repair 1305 (19) 1183 (15) 774 (19) 905 (19) 473 (9.6)
None 3551 (50) 4043 (53) 2067 (50) 2224 (46) 2538 (51)

Cartilage injury (ICRS grade)
1 or 2 808 (11) 930 (12) 632 (15) 898 (19) 927 (19)
3 or 4 262 (3.7) 280 (3.6) 176 (4.3) 389 (8.0) 520 (11)
None 5968 (85) 6483 (84) 3310 (80) 3565 (73) 3483 (71)

Graft choice
BPTB 424 (6.0) 579 (7.5) 3565 (87) 4035 (83) 397 (8.1)
Hamstring 6388 (91) 6884 (89) 224 (5.4) 478 (9.9) 4382 (89)
QT/BQT 152 (2.2) 142 (1.8) 270 (6.6) 252 (5.2) 72 (1.5)
Other 74 (1.1) 88 (1.1) 59 (1.4) 87 (1.8) 79 (1.6)

Tibial fixation device
Interference screw 6101 (87) 6688 (87) 3980 (97) 4594 (95) 4396 (89)
Suspension/cortical device 700 (9.9) 771 (10) 59 (1.4) 123 (2.5) 378 (7.7)
Other 237 (3.4) 234 (3.0) 79 (1.9) 135 (2.8) 156 (3.2)

Femoral fixation device
Interference screw 118 (1.7) 10 (0.1) 3955 (96) 4369 (90) 341 (6.9)
Suspension/cortical device 6284 (89) 6902 (90) 10 (0.2) 117 (2.4) 4189 (85)
Other 636 (9.0) 781 (10) 153 (3.7) 366 (7.5) 400 (8.1)

Fixation device combination
Interference screw 3 2 96 (1.4) 0 (0) 3845 (93) 4211 (87) 315 (6.4)
Interference screw femur/suspension tibia 15 (0.2) 8 (0.1) 50 (1.2) 63 (1.3) 14 (0.3)
Suspension/cortical device 3 2 587 (8.3) 619 (8.0) 9 (0.2) 13 (0.3) 312 (6.3)
Suspension femur/interference screw tibia 5523 (78) 6102 (79) 0 (0) 97 (2.0) 3771 (76)
Other 817 (12) 964 (13) 214 (5.2) 468 (9.6) 518 (11)

History of previous surgery on opposite kneeb 379 (5.4) 467 (6.1) 266 (6.5) 434 (8.9) 431 (8.7)
History of previous surgery on same kneeb 1043 (15) 1002 (13) 472 (11) 878 (18) 1145 (23)
Median time injury to surgery, y 0.54 [0.30-1.13] 0.64 [0.37-1.36] 0.63 [0.34-1.22] 0.58 [0.30-1.29] 0.68 [0.36-1.56

aData are presented as n (%), mean 6 SD, or median [IQR]. BPTB, bone–patellar tendon–bone autograft; ICRS, International Cartilage
Regeneration & Joint Preservation Society; KOOS, Knee injury and Osteoarthritis Outcome Score; QOL, Quality of Life subscale; QT/BQT,
quadriceps tendon autograft, with or without bone.

bSurgery performed before primary anterior cruciate ligament reconstruction and enrollment in the register.
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in each group. In this study, revision rate was the primary
outcome of interest, and this rate was different among each
of the 5 patient groups. Similarly, the survival for each
cluster was also distinct, allowing for a time-dependent
cluster-based estimation of revision risk.

Accurately assigning a patient to 1 of the 5 clusters
requires consideration of all variables included in the

analysis. However, with so many predictor variables to
consider, clinical interpretation and application of the
patient subgroups can be challenging. To increase the clin-
ical utility, the 5 patient clusters were reviewed by 7
subspecialty-trained orthopaedic sports medicine surgeons
for defining characteristics. The recently developed SHAP
analysis18 was also applied to increase the explainability

Figure 2. Continuous variable summaries by cluster. Box plots summarize the distributions of continuous predictor variables for
each of the 5 patient subgroups identified with the unsupervised learning procedure. KOOS, Knee injury and Osteoarthritis Out-
come Score; QOL, Quality of Life subscale; Sport, Sport and Recreation subscale.
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of the model and decrease the black-box effect. The clusters
were subsequently simplified into the following categories
(Figure 5):

� Cluster 1: young patient with HT autograft and low
baseline KOOS Sports score

� Cluster 2: patient with HT autograft and high baseline
KOOS Sports score

� Cluster 3: patient with BPTB or QT autograft and high
baseline KOOS Sports score

� Cluster 4: patient with BPTB or QT autograft and low
baseline KOOS Sports score

� Cluster 5: older patient with HT autograft and low base-
line KOOS Sports score

Based on the revision rates of each cluster, cluster 1 is con-
sidered high risk for revision surgery, cluster 2 is consid-
ered moderate risk for revision, and clusters 3 to 5 are
considered low risk. While the overall revision rate in the
KLR was 5.1%, nearly half (49%) of the patients fell into
one of the low-risk categories (clusters 3-5) with a revision
rate of 3.1% to 4.7%. On the other end of the spectrum,
cluster 1 patients demonstrated a revision rate of nearly
10%.

Closer inspection of the highest risk cluster (cluster 1)
reveals some interesting trends, including a higher propor-
tion of patients with HT autograft, young age, female sex,
and inferior baseline KOOS Sports scores. These factors
become especially apparent when compared with clusters

Figure 3. The plot shows mean absolute SHapley Additive exPlanations (SHAP) values by variable for all clusters. Colors in the
plot show the contributions from observations assigned to each cluster. BPTB, bone–patellar tendon–bone autograft; comb,
combined; fix., fixation; ICRS, International Cartilage Regeneration & Joint Preservation Society; KOOS, Knee injury and Osteo-
arthritis Outcome Score; QOL, Quality of Life subscale; QT/BQT, quadriceps tendon autograft, with or without bone; Sports, Sport
and Recreation subscale.

Figure 4. Kaplan-Meier survival curve for all 5 clusters.
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2 and 5, which also consisted primarily of HT reconstruc-
tion but demonstrated revision rates closer to the mean.
ACLR with HT autograft has previously been associated
with higher revision surgery rates based on the NKLR.28

Additionally, young age is a recognized risk factor for fail-
ure of ACLR.14,40,41 Interestingly, the finding that young
women receiving HT autograft (cluster 1) may be consid-
ered to have the highest risk for subsequent revision sur-
gery is a novel finding. While it is generally accepted
that female sex is associated with a higher risk of initial
ACL injury,37 it has not been found to be associated with
higher ACLR revision rates.1,3,14,24 Similarly, the authors
are not aware of any literature associating preoperative
KOOS Sports scores and subsequent revision risk. This
unsupervised learning analysis suggests that because of
the complex nature of the interactions between predictor
variables, for some patients in certain circumstances, var-
iables such as sex and preoperative patient-reported out-
come measures may be important risk factors.

There are limitations to the present study. First, com-
plete case data were available for less than half of the
KLR, decreasing the number of patients available for anal-
ysis. Despite the missing data, however, .28,000 patients
were included, which is sufficient for the purpose of unsu-
pervised machine learning model development, and the
inclusion of patients from 2 national databases increases
generalizability. Another limitation is that the KLR is pri-
marily composed of patients who received either HT,
BPTB, or QT autograft. There were not enough patients
receiving other graft choices such as allograft to have
a meaningful effect on the clustering. These additional
data would be useful in future studies to evaluate whether
patients receiving allograft would form their own distinct
clusters. The primary outcome measure of revision surgery
represents another limitation, as some patients who expe-
rience graft failure or inferior clinical surgical outcome do
not undergo subsequent revision surgery. Additionally, it
is possible that an alternative unsupervised learning
method may have yielded different results. There are

several alternative approaches to unsupervised learning,
such as principal component analysis, anomaly detection,
and divisive hierarchical clustering, among others. How-
ever, the 3 unsupervised learning methods evaluated
with this study represent the most common and appropri-
ate for the data type and goals of this study. Finally, other
factors potentially associated with failure of ACLR, such as
pivot-shift grade, tibial slope, rehabilitation details, and
surgical adjuncts such as lateral extra-articular tenodesis
or anterolateral ligament reconstruction, were not cap-
tured in the KLR and were not considered in the analysis.
The inclusion of these variables in future data collection
may yield different clustering results.

There are also limitations to the clinical interpretability
of this unsupervised analysis because of the complex deter-
mination of cluster characteristics. The simplified summary
of each cluster may not consider certain relevant character-
istics, which may lead to inaccurate risk estimation in the
office setting. Considering, for example, that nearly 12% of
the patients in cluster 4 received grafts other than BPTB
or QT, suggests that there is more to the groupings than
simply graft choice and KOOS Sports score. Similarly, con-
tinuous variables such as age and KOOS values can be chal-
lenging to interpret, for example, when defining what
constitutes the cutoff point for high or low preoperative
KOOS values. Finally, because of the nature of the study
investigating revision rates of unsupervised learning–based
clusters, the accuracy of the risk estimates was not exter-
nally validated. This represents the most important next
step before prospective clinical application is recommended.

CONCLUSION

Unsupervised learning enabled the identification of 5 dis-
tinct KLR patient subgroups, and each grouping was asso-
ciated with a unique ACLR revision rate. Patients can be
approximately classified into 1 of the 5 clusters based on
only 3 variables: age, graft choice (HT, BPTB, or QT

Figure 5. Tree diagram for approximate patient classification by cluster. BPTB, bone–patellar tendon–bone autograft; KOOS,
Knee injury and Osteoarthritis Outcome Score (Sports subscale); QT, quadriceps tendon autograft, with or without bone.
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autograft), and preoperative KOOS Sports subscale score.
If externally validated, the resulting groupings may enable
quick risk stratification for future patients undergoing
ACLR in the clinical setting. Patients in cluster 1 are con-
sidered high risk (9.9%) for subsequent revision ACLR,
patients in cluster 2 medium risk (6.9%), and patients in
clusters 3 to 5 low risk (3.1%-4.7%).
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