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Abstract
Purpose External validation of machine learning predictive models is achieved through evaluation of model performance on 
different groups of patients than were used for algorithm development. This important step is uncommonly performed, inhib-
iting clinical translation of newly developed models. Machine learning analysis of the Norwegian Knee Ligament Register 
(NKLR) recently led to the development of a tool capable of estimating the risk of anterior cruciate ligament (ACL) revision 
(https:// swast vedt. shiny apps. io/ calcu lator_ rev/). The purpose of this study was to determine the external validity of the NKLR 
model by assessing algorithm performance when applied to patients from the Danish Knee Ligament Registry (DKLR).
Methods The primary outcome measure of the NKLR model was probability of revision ACL reconstruction within 1, 2, 
and/or 5 years. For external validation, all DKLR patients with complete data for the five variables required for NKLR pre-
diction were included. The five variables included graft choice, femur fixation device, KOOS QOL score at surgery, years 
from injury to surgery, and age at surgery. Predicted revision probabilities were calculated for all DKLR patients. The model 
performance was assessed using the same metrics as the NKLR study: concordance and calibration.
Results In total, 10,922 DKLR patients were included for analysis. Average follow-up time or time-to-revision was 8.4 
(± 4.3) years and overall revision rate was 6.9%. Surgical technique trends (i.e., graft choice and fixation devices) and injury 
characteristics (i.e., concomitant meniscus and cartilage pathology) were dissimilar between registries. The model produced 
similar concordance when applied to the DKLR population compared to the original NKLR test data (DKLR: 0.68; NKLR: 
0.68–0.69). Calibration was poorer for the DKLR population at one and five years post primary surgery but similar to the 
NKLR at two years.
Conclusion The NKLR machine learning algorithm demonstrated similar performance when applied to patients from the 
DKLR, suggesting that it is valid for application outside of the initial patient population. This represents the first machine 
learning model for predicting revision ACL reconstruction that has been externally validated. Clinicians can use this in-clinic 
calculator to estimate revision risk at a patient specific level when discussing outcome expectations pre-operatively. While 
encouraging, it should be noted that the performance of the model on patients undergoing ACL reconstruction outside of 
Scandinavia remains unknown.
Level of evidence III.
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Introduction

At the time of primary surgery, how does a surgeon estimate 
the risk of their patient needing a revision anterior cruci-
ate ligament (ACL) reconstruction in the future? Numerous 

studies have defined failure rate epidemiology and identified 
risk factors such as age [13, 18, 24, 27, 32, 33], graft choice 
[13, 18, 21] and size [1], activity level [13, 33], body com-
position [27], ligamentous laxity [14, 18], and tibial slope 
[10, 31]. Despite this mass of knowledge, the ability to syn-
thesize it and accurately quantify revision risk at a patient-
specific level remains elusive and is often influenced by sur-
geon experience. This uncertainty is rooted in the complex 
relationships between the known (and unknown) risk factors 
that may be present to varying degrees in the patient seated 

http://orcid.org/0000-0001-9918-0264
https://swastvedt.shinyapps.io/calculator_rev/
http://crossmark.crossref.org/dialog/?doi=10.1007/s00167-021-06828-w&domain=pdf
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in the office. The personal experience of the surgeon com-
bined with their subjective interpretation of these variables 
in real time leads to the equivalent of an educated guess 
regarding revision rate.

Machine learning has the potential to add clarity and 
improve our predictive capability. While relatively new to 
knee ligament surgery, the application of machine learn-
ing is rapidly transforming clinical care in several fields, 
including orthopaedic surgery. In short, machine learning 
is a combination of advanced statistical techniques that can 
interpret large data sets that are more complex than would be 
possible with traditional statistics. Through analysis of large 
databases, machine learning can decipher the complex inter-
actions between variables and generate algorithms capable 
of outcome prediction. Often, the result is accuracy that is 
comparable to or better than the prediction of experts in the 
field [5, 8, 23, 25, 26, 29, 34].

Recently, machine learning was used to develop a tool 
that can quantify revision risk for a patient undergoing pri-
mary ACL reconstruction (https:// swast vedt. shiny apps. io/ 
calcu lator_ rev/; Fig. 1)[19]. The source of data included 
nearly 25,000 patients with primary ACL reconstruc-
tion recorded in the Norwegian Knee Ligament Register 
(NKLR). The result was a well-calibrated tool capable of 
predicting revision risk one, two, and five years after pri-
mary ACL reconstruction with moderate accuracy. Follow-
ing model development, external validation is the next step 
toward clinical application of new models.

The purpose of this study was to determine the external 
validity of the previously published NKLR ACL revision 
algorithm by assessing its performance when applied to 
patients from the Danish Knee Ligament Registry (DKLR). 
The hypothesis was that model performance would be simi-
lar, suggesting validity of the algorithm. This represents 
the first study to assess external validation of a clinical 
tool developed using machine learning techniques for out-
come prediction following ACL reconstruction. The abil-
ity to estimate revision risk at a patient specific level may 
help guide discussion surrounding outcome expectations 
pre-operatively.

Materials and methods

This manuscript was written in accordance with the Trans-
parent Reporting of a multivariable prediction model for 
Individual Prognosis Or Diagnosis (TRIPOD) statement [6]. 
The TRIPOD statement is a comprehensive set of recom-
mendations for studies that develop and/or validate predic-
tion models. The 22-item checklist aims to improve trans-
parency of prediction model studies through full and clear 
information reporting, independent of study methods.

Ethics

At the time of enrollment in the NKLR all patients provide 
informed consent and the Norwegian Data Inspectorate 
grants permission for the register to collect, analyze, and 
publish on health data. Data registration was performed 
confidentially according to Norwegian and European Union 
(EU) data protection rules, with all data de-identified prior 
to retrieval for analysis. The Regional Ethics Committee 
(REK) states that it is not necessary to obtain further ethical 
approval for Norwegian register-based studies [9]. Similarly, 
the DKLR obtains informed consent at the time of enroll-
ment and patient data was de-identified prior to retrieval for 
analysis with no further ethical approval required.

Data source

Original prediction model development was based on 
machine learning analysis of patients contained within the 
NKLR while model validation was performed using patients 
from the DKLR. Both national knee ligament registries 
prospectively enrol patients undergoing cruciate ligament 
reconstruction pre-operatively and record demographic, 
injury, surgical, and follow-up outcome details including 
subsequent revision reconstruction. The Norwegian regis-
try was established in 2004 and reporting has been manda-
tory since 2017. Overall compliance with the NKLR was 
86% in 2017–18. Patients are registered using their unique Fig. 1  Link to ACL revision risk prediction in-clinic calculator [19]

https://swastvedt.shinyapps.io/calculator_rev/
https://swastvedt.shinyapps.io/calculator_rev/
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Norwegian national identification number which links iden-
tification of subsequent revision surgery performed within 
Norway, regardless of the provider. The DKLR was founded 
in 2005 and similarly records longitudinal outcome of ACL 
reconstruction within Denmark.

Participants and predictors

In the index study of NKLR patients [19], four machine 
learning prediction models were assessed for the ability to 
predict subsequent revision ACL reconstruction after pri-
mary surgery. The four models tested were Cox Lasso, sur-
vival random forest, generalized additive model, and gradi-
ent boosted regression. These four models are among the 
most commonly used for this type of analysis. The patients 
in the NKLR were randomly split into training (75%) and 
test (25%) sets; the algorithm was developed using the train-
ing set of patients, and the performance of the algorithm was 
assessed with the hold-out test set, previously unseen by the 
models. The Cox Lasso model was the best-performing of 
the four tested models and was used for the development of 
an in-clinic revision-risk calculator (Fig. 1).

Regarding outcome prediction, the four models assessed 
all the available data in the NKLR to “learn” which factors 
are associated with—and can be used to predict—which 
patients will eventually undergo revision surgery. Starting 
with the 24 total predictor variables in the NKLR, the mod-
els eliminated variables which do not significantly improve 
prediction ability, without sacrificing accuracy. The result 
was an algorithm developed using the Cox Lasso model that 
only required five variables (out of the 24) for outcome pre-
diction. The model was well calibrated and demonstrated 
moderate discriminative ability in predicting revision sur-
gery after primary ACL reconstruction [19].

This study sought to validate the previously developed 
Cox Lasso model from the NKLR. The Cox Lasso model 
was selected for validation since it was the best performing 
model and because some of the variables required for the 
random forest and gradient boosted regression models were 
not available in the DKLR. Thus, while the full set of patient 
characteristics are shown in Table 1, only the five predictors 
selected by the NKLR Cox Lasso model were used in this 
validation analysis. The five variables required for outcome 
prediction using the Cox Lasso model were: patient age at 
primary surgery, KOOS QoL score at primary surgery, graft 
choice, femur fixation method, and years between injury and 
ACL reconstruction.

For model validation, patients in the DKLR with primary 
surgery dates from July 2005 through December 2020 were 
included (N = 34,678). To match variables used in the NKLR 
model, graft choice and femur fixation device were re-coded 
as shown in Table 1. New variables were defined for time 

Table 1  Characteristics of Danish registry patients

Variablea N = 34,678

Years: surgery to data current date (2021-06-14) 8.3 (4.3)
 Missing 1

Revision 1791 (5.2%)
 Missing 1

Follow-up time or time to revision 7.6 (4.4)
 Missing 1

Age at surgery 29 (10)
 Missing 1

Age at injury 27 (10)
 Missing 499

Sex
 Female 13,958 (40%)
 Male 20,719 (60%)
 Missing 1

Pre-surgery KOOS QOL score (out of 10) 3.90 (1.61)
 Missing 23,522

Pre-surgery KOOS Sports score (out of 10) 3.80 (2.55)
 Missing 23,523

Below median on all pre-surgery KOOS 1868 (17%)
 Missing 23,520

Meniscus injury 15,501 (45%)
Cartilage injury 5345 (15%)
Graft choice
 BPTB 3,218 (9.3%)
 Hamstring 28,291 (82%)
 Unknown/Other 3045 (8.8%)
 Missing 124

Tibia fixation device
 Interference screw 30,817 (89%)
 Suspension/cortical device 983 (2.8%)
 Unknown/Other 2878 (8.3%)

Femur fixation device
 Interference screw 6,072 (18%)
 Suspension/cortical device 24,949 (72%)
 Unknown/Other 3657 (11%)

Fixation device combination
 Interference screw × 2 5951 (17%)
 Interference/Suspension 10 (< 0.1%)
 Suspension/cortical device × 2 968 (2.8%)
 Suspension/Interference 22,308 (64%)
 Unknown/Other 5441 (16%)

Injured side
 Right 17,781 (51%)
 Left 16,895 (49%)
 Missing 2

Previous surgery on opposite knee 2745 (7.9%)
 Missing 108

Previous surgery on same knee 28,809 (83%)
Time injury to surgery (years) 1.65 (3.21)
 Missing 712
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between injury and primary surgery. The Knee Injury and 
Osteoarthritis Outcome Score (KOOS) Quality of Life 
(QoL) predictor was scaled to a score out of ten. Patients in 
the DKLR with missing data for any of the five predictors 
were excluded from model validation.

Outcome measures and model performance

The primary outcome in the NKLR Cox Lasso model was 
probability of revision ACL reconstruction within 1, 2, and/
or 5 years. Using R (version: 3.6.1, R Core Team 2019, 
Vienna, Austria) the NKLR Cox Lasso model was applied 
to calculate predicted time-to-revision probabilities for all 
DKLR patients. Performance evaluation included censor-
ing of the time-to-event outcome. “Censoring” refers to the 
fact that, at any given follow-up time, complete informa-
tion on outcome is not known for all patients. Some patients 
have not been in the registry for the requisite number of 
years, while others have not yet experienced revision and it 
is unknown when or if they ultimately will.

Performance of the model was assessed using the same 
metrics as the NKLR study: calibration and concordance 
at each follow-up time. Calibration refers to the accuracy 
of the risk estimates and was calculated using a version of 
the Hosmer–Lemeshow statistic appropriate for censored 
data [30]. This statistic sums average misclassification in 
each predicted risk quantile and converts the result into a 
chi-squared statistic. A larger calibration statistic indicates 
worse calibration, and statistical significance means the 
null hypothesis of perfect calibration is rejected. Concord-
ance was computed using Harrell’s C-index [12] at 1, 2, and 
5-year follow-up times. The C-index is a generalization of 
area under the curve (AUC) for censored data that measures 
the proportion of ranked pairs of observations in which the 
predicted ranking corresponds with true outcomes. As with 
AUC, the C-index ranges from 0 to 1 with 1 indicating per-
fect concordance.

Results

Participants

Table 1 describes characteristics of the DKLR population at 
the time of primary surgery. Patients had an average age at 
primary surgery of 29 years (SD ± 10) and 60% were male. 

Hamstring graft was used in 82% of primary surgeries. Of 
the DKLR patients, 10,922 had complete data for all five 
variables required by the NKLR Cox Lasso model. Table 2 
compares DKLR patients with complete data for these five 
variables to the NKLR training-data patients with complete 
data. The large sample sizes produced p-values below the 
significance threshold on all characteristics, including a few 
clinically meaningful differences. The DKLR patients were 
more likely to have hamstring tendon autograft (DKLR: 
81%; NKLR: 59%) and suspension/cortical femur fixation 
(DKLR: 72%; NKLR: 53%). Additionally, the rate of con-
comitant meniscus (DKLR: 42%; NKLR: 53%) and chon-
dral (DKLR: 14%; NKLR: 23%) injuries were higher in the 
NKLR cohort, while overall revision rate was higher in the 
Danish registry patients (DKLR: 6.9%; NKLR: 5.2%). The 
DKLR patients with complete data on the five required vari-
ables were in general similar to those without complete data, 
particularly on the five required variables (Supplementary 
Table 1).

Model performance

The NKLR Cox Lasso model produced similar concordance 
with the DKLR population compared to the original NKLR 
test data (DKLR: 0.68; NKLR: 0.68–0.69). Calibration was 
poorer for the DKLR population than for the NKLR test 
data at 1 and 5 years post primary surgery but similar at two 
years (Table 3).

Discussion

The most important finding of this study was that a machine 
learning algorithm developed from the NKLR demonstrated 
similar performance when applied to patients from the 
DKLR. Despite different injury profiles including concomi-
tant meniscus/chondral injury rates and variation in surgical 
technique trends between the two nations, the concordance 
was nearly identical to that achieved with the index study 
of NKLR patients. This suggests that the algorithm is valid 
for application outside of the initial patient population and 
represents the first machine learning model for predicting 
revision ACL reconstruction that has been externally vali-
dated. The original model was developed to help guide the 
clinical discussion regarding surgical options and outcome 
expectations at a patient-specific level [19].

Machine learning models explore large datasets divided 
into inputs (predictors) and outputs (outcomes), to estab-
lish connections and relationships between them. These 
relationships may be more complex than could be identified 
through standard statistical analysis. When a machine learn-
ing algorithm can determine a link between the predictors 
and outcome of interest, it can then create a tool capable of 

a Statistics presented: Mean (SD); n (%)

Table 1  (continued)

Variablea N = 34,678

Systemic antibiotic prophylaxis 34,678 (100%)
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Table 2  Characteristics of 
patients with complete data on 
Norwegian Cox lasso variables

* Statistics presented: Mean (SD); n (%)
** Statistical tests: Welch Two Sample t test; Pearson’s Chi-squared test

Variable* Danish
N = 10,922

Norwegian
N = 14,161

P value**

Years: surgery to data current date (Danish: 
06–14-2021; Norwegian: 01–12-2020)

9.3 (4.1) 8.4 (4.1) < 0.001

Revision 755 (6.9%) 743 (5.2%) < 0.001
Follow-up time or time to revision 8.4 (4.3) 7.0 (4.2) < 0.001
Age at surgery 29 (11) 28 (10) < 0.001
Age at injury 27 (10) 26 (10) < 0.001
 Missing 9 0

Sex n.s
 Female 4916 (45%) 6376 (45%)
 Male 6006 (55%) 7785 (55%)

Pre-surgery KOOS QOL score (out of 10) 3.90 (1.61) 3.48 (1.87)  < 0.001
Pre-surgery KOOS Sports score (out of 10) 3.80 (2.55) 4.27 (2.73)  < 0.001
Missing 1 137
Below median on all pre-surgery KOOS 1825 (17%) 2799 (20%)  < 0.001
Meniscus injury 4584 (42%) 7537 (53%)  < 0.001
Cartilage injury 1579 (14%) 3318 (23%)  < 0.001
Graft choice  < 0.001
 BPTB 1133 (10%) 5522 (39%)
 Hamstring 8866 (81%) 8369 (59%)
 Unknown/Other 923 (8.5%) 270 (1.9%)

Tibia fixation device  < 0.001
 Interference screw 9925 (91%) 10,841 (77%)
 Suspension/cortical device 155 (1.4%) 1468 (10%)
 Unknown/Other 842 (7.7%) 1852 (13%)

Femur fixation device  < 0.001
 Interference screw 2025 (19%) 4763 (34%)
 Suspension/cortical device 7891 (72%) 7522 (53%)
 Unknown/Other 1006 (9.2%) 1876 (13%)

Fixation device combination  < 0.001
 Interference screw × 2 1978 (18%) 4645 (33%)
 Interference/Suspension 2 (< 0.1%) 90 (0.6%)
 Suspension/cortical device × 2 153 (1.4%) 1095 (7.7%)
 Suspension/Interference 7218 (66%) 5529 (39%)
 Unknown/Other 1571 (14%) 2802 (20%)

Injured side n.s
 Right 5512 (50%) 7149 (50%)
 Left 5409 (50%) 7012 (50%)
 Missing 1 0

Previous surgery on opposite knee 549 (5.0%) 1001 (7.1%) < 0.001
 Missing 27 0

Previous surgery on same knee 9014 (83%) 2412 (17%) < 0.001
Time injury to surgery (years) 1.75 (3.34) 1.66 (3.35) 0.040
Systemic antibiotic prophylaxis < 0.001
 Yes 10,922 (100%) 14,089 (99%)
 No 0 (0%) 46 (0.3%)
 Missing 0 (0%) 26 (0.2%)
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predicting this outcome for other patients. After a prediction 
model has been developed, the TRIPOD Statement strongly 
recommends external validation, achieved through evalua-
tion of model performance on new and different groups of 
patients than were used in the development of the algorithm 
[6]. However, this important step is uncommonly performed, 
inhibiting the clinical translation of newly developed models 
[28].

The original machine learning model was created based 
on a database including nearly 25,000 patients with 24 vari-
ables considered. Four machine learning models were evalu-
ated, and the Cox Lasso model was selected for the develop-
ment of an in-clinic prediction tool. This tool required the 
input of only five variables for the prediction of subsequent 
revision ACL reconstruction risk. Although the performance 
of this model was assessed using hold-out data that was not 
included in the learning phase, it only included patients from 
one nation, limiting its applicability to patients from other 
countries [19].

This study found that accuracy of the NKLR Cox Lasso 
model holds when applied to a large data set from another 
country with different injury characteristics and surgical 
technique trends. The prediction model demonstrated similar 
model performance when tested on patients from Denmark 
that had not been previously seen by the algorithm. It was 
initially developed using 75% of the patients in the NKLR 
and validated using the remaining 25%. This study validates 
the algorithm using an additional 11,000 patients from the 
DKLR and represents a necessary step toward clinical utility. 
While this is encouraging, it should be noted that the perfor-
mance of the model on patients undergoing ACL reconstruc-
tion outside of Scandinavia remains unknown. Additionally, 
there are currently no other published prediction models 
with which to compare the performance of this model.

Study population variance between the DKLR and NKLR 
populations may help explain differences in model calibra-
tion at one and five years post primary surgery. The DKLR 
patients with complete data had higher proportions of ham-
string tendon autograft and suspension/cortical femur fixa-
tion than patients in the NKLR test data. Both these vari-
ables are used in the NKLR Cox Lasso model. Thus, the 
relationship between graft choice and/or femur fixation and 

revision risk codified in the model may not be as accurate for 
patient populations with a substantially different distribution 
on these variables, such as those in the DKLR. Regarding 
the fact that the validation data set was limited to approxi-
mately one-third of the overall DKLR registry population 
due to missing values for the required predictors, the objec-
tive of this paper was to test the machine learning model on 
a new population and the inclusion of nearly 11,000 patients 
represents a suitable data set for this purpose.

While this novel technique represents a new frontier for 
health-related research, limitations regarding the clinical util-
ity of machine learning algorithms remain. Most importantly, 
the quality of the model is largely related to the quality of the 
data that it is developed from. The concordance of the revision 
ACL prediction tool is moderate based on both the initial and 
subsequent validation studies. As noted in the original paper, 
this may be related to data quality since several risk factors for 
failure of ACL reconstruction are not captured in the NKLR 
[19]. Examples of these factors include radiographic variables 
such as tibial slope and coronal alignment [2–4, 10, 15, 20, 
31], physical examination and rehabilitation details [11, 14, 
18, 22], and surgical technique factors such as tunnel position 
[16] and graft size [1, 7, 17]. The addition of these variables 
into the national knee ligament registers may improve future 
machine learning prediction endeavours.

There is an additional limitation concerning this external 
validation study. Since pre-operative KOOS QoL score at the 
time of surgery was one of the input variables required for 
outcome prediction, all patients in the DKLR without a pre-
operative KOOS score were excluded from the analysis. This 
resulted in the exclusion of approximately two-thirds of the 
patients contained in the DKLR since pre-surgical compliance 
with patient reported outcome measures is relatively low in the 
registry. Despite this, nearly 11,000 patients were still included 
in the model evaluation which is sufficient for validation.

Machine learning analysis of large health-care registries 
have the potential for great impact on patient care. These 
advanced statistical techniques can assess and interpret 
large volumes of data and recognize complex associations 
between predictor variables and patient-specific outcome. 
The resulting algorithm, as is the case with the present study, 
can be implemented into clinical care as an adjunct for the 

Table 3  Model performance Probability of 
Revision

Model Concordance Calibration 
statistic

Calibration p-value

1 year Original Norwegian Algorithm 0.686 4.89 n.s
Danish Knee Ligament Registry 0.678 22.24 < 0.001

2 years Original Norwegian Algorithm 0.684 11.35 0.01
Danish Knee Ligament Registry 0.676 11.82 0.008

5 years Original Norwegian Algorithm 0.683 6.19 n.s
Danish Knee Ligament Registry 0.678 13.98 0.003
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orthopaedic surgeon. Supplementing their personal experi-
ence and interpretation of the relevant risk factors, clinicians 
can use this in-clinic calculator to individualize their discus-
sions and quantify the risk of revision ACL reconstruction 
for their patients.

Conclusion

The NKLR machine learning algorithm demonstrated simi-
lar performance when applied to patients from the DKLR, 
suggesting that it is valid for application outside of the initial 
patient population. This represents the first machine learn-
ing model for predicting revision ACL reconstruction that 
has been externally validated. Clinicians can use this in-
clinic calculator to estimate revision risk at a patient specific 
level when discussing outcome expectations pre-operatively. 
While encouraging, it should be noted that the performance 
of the model on patients undergoing ACL reconstruction 
outside of Scandinavia remains unknown.
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