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Background: Mortality prediction is important in intensive
care. The Simplified Acute Physiology Score (SAPS) II is a tool
for predicting such mortality. However, the original SAPS II is
poorly calibrated to current intensive care unit (ICU) popula-
tions because it draws on data, which is more than 20 years old.
We aimed to improve the calibration of SAPS II using data from
the Norwegian Intensive Care Registry (NIR). This is the first
recalibration of SAPS II for Nordic data.
Methods: A first-level customization was applied to improve
calibration of the original SAPS II model (Model A). NIR data
used covered more than 90% of adult patients admitted to ICUs
in Norway from 2008 to 2010 (n = 30712).
Results: The modified SAPS II, Model B, outperformed the
original Model A with respect to calibration. Model B gave more
accurate predictions of mortality than Model A (Hosmer–
Lemeshow’s C: 22.01 vs. 689.07; Brier score: 0.120 vs. 0.131; Cox’s
calibration regression: α = −0.093 vs. −0.747, β = 0.921 vs. 0.735,

(α|β = 1) = −0.009 vs. −0.630). The standardized mortality ratio
was 0.73 [95% confidence interval (CI) of 0.70–0.76] for Model A
and 0.99 (95% CI of 0.95–1.04) for Model B. Discrimination was
good for both models (area under receiver operating character-
istic curve = 0.83 for both models).
Conclusions: As expected, Model B is better calibrated than
Model A, and both models have similar uniformity of fit and
equal discrimination. Introducing Model B into Norwegian ICUs
may improve precision in decision-making. Units will have a
more realistic benchmark for the assessment of ICU perfor-
mance. Mortality risk estimates from Model B are better than
previous SAPS II estimates have been.
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Mortality prediction is important in clinical
decision-making, benchmarking, policy

making, priority setting at a population health level,
and sometimes also for individual patients. Reliable
information on risk is a key foundation for high-
quality decisions. In intensive care, severity scores
have been used for about 30 years and have been
important decision-making tools for clinicians and
planners.1 However, such scoring systems have
weaknesses, for example, they are not suitable for
predicting individual survival probabilities, and
they need continuous improvement and updating.2

Intensive care mortality prediction models are
statistical methods designed to predict hospital
mortality on the basis of patient data collected
during admission to an intensive care unit (ICU).
Often, the emphasis is on the first 24 h of care.
Since the 1980s, several models have been devel-
oped [for example, Acute Physiology, Age, Chronic
Health Evaluation (APACHE),3 Mortality Predic-

tion Model (MPM),4 and Simplified Acute Physiol-
ogy Score (SAPS)5], and they have applications in
several domains. They are used to assess the sever-
ity of illness of individual patients in overall evalu-
ations of the quality of care provided by the ICU,
both between units and within a single unit.6 In
clinical trials, mortality prediction models are used
to ensure that patients are assigned randomly to
their respective groups.6 In priority setting, mortal-
ity prediction models may also be applied when
studying trade-offs between expected health ben-
efits and severity of disease. SAPS II will be the
focus of this paper.

The important properties of any mortality predic-
tion model are discrimination, uniformity of fit, and
calibration. Discrimination measures the degree to
which the model is able to assign high mortality
probabilities to patients who die, and low probabili-
ties to those who survive. SAPS II has been reported
to provide very good discrimination.7 Uniformity of
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fit is good when patients with similar SAPS II scores
also have similar hospital mortalities across a broad
range of subgroups, such as age groups, gender, or
types of admission. SAPS II has been found to have
poor uniformity of fit across diagnostic groups.5,8

Finally, a model is well calibrated if the predicted
mortality rate is close to the observed mortality rate.
Calibration for SAPS II has repeatedly been reported
as inadequate.9–13

If calibration is poor, the quality of mortality pre-
dictions will be reduced. For example, policy deci-
sions relying on such low-quality information may
assume that ICU mortality is higher (or lower) than
what it actually is. This may skew resource allocation
away from the optimum. Also, benchmarking
becomes difficult, which may influence how ICUs
perceive their performance indicators. For example,
ICUs are expected to perform better with time, so a
poor ICU in 2010 may still perform much better than
an excellent ICU did in 1990. Thus, customization of
the SAPS II model should be performed regularly,
preferably as often as every 2–3 years.14 It should
also be performed within as many settings as pos-
sible. The disease burden and access to technology
vary across populations. For example, lack of respi-
rators in low-income countries may highly impact
ICU mortality. Also, if admissions due to drug and
alcohol intoxication are more frequent in one ICU
than in others, we may expect substantial differ-
ences in SAPS II adjusted mortalities. The calibration
of mortality prediction models is therefore highly
dependent on context.

Customization can be done at two levels. In
second-level customization, the underlying variables
are altered or differently weighted, giving entirely
new SAPS II scores for each patient. In first-level
customization, the SAPS II scores remain
unchanged, but the equation converting these scores
to mortality probabilities is modified. First-level
customization is the most common approach. The
results at this level are easy to use, as all one needs is
a set of SAPS II scores and the new coefficients of
Equation 1. A third approach to customization is to
add new variables to the underlying model, or to use
SAPS II scores as one of several explanatory variables
in a different model. Investigators have recognized
that the original SAPS II model was far too pessimis-
tic in estimating the mortality rates of patients suffer-
ing from drug or alcohol intoxication.15,16 As a
consequence, new models were constructed where
‘intoxication’ was added as a variable. Other new
variables, such as ‘sex’ and ‘sequential organ failure
assessment score’ have also been added.

SAPS II scores are routinely recorded in the ICUs
of many European countries, including Norway.
Other prediction tools, such as APACHE and MPM,
are not as commonly used in this region. Recently,
SAPS 3 was developed as an attempt to improve
SAPS II. However, it is not clear that SAPS 3 is
indeed superior to SAPS II.12,13,17 To allow for track-
ing of ICU performance over time, and keeping old
research comparable with new results, we therefore
focus on SAPS II. As mentioned, it is important to
calibrate this prediction model using data from a
local and contextualized cohort. The Norwegian
Intensive Care Registry (NIR) consists of data from
patients admitted to ICUs in Norway. We have used
the most recent cohorts available in NIR in this
study (the 2008–2010 cohorts). This is the first time
SAPS II is recalibrated for NIR data. SAPS II has
previously never been recalibrated for data from any
Nordic country.

The aim of this study was to recalibrate the origi-
nal SAPS II model by performing a first-level
customization based on the NIR data set.

Material and methods

Patients
The NIR data formed the basis of this customization.
The registry consists of data from more than 90% of
adult patients (18+) admitted to ICUs in Norway.
NIR includes 42 surgical, medical, and mixed ICUs
in 38 hospitals at primary, secondary, and tertiary
level. Because participation in NIR is not mandatory
for Norwegian hospitals, there still are a few hospi-
tals not delivering data to NIR. This is similar to
most other national intensive care registries. Some
specialized ICUs, one burn unit and some post-
cardiac surgery combined-recovery ICUs, have also
systematically not been included. We do not con-
sider this a severe bias. Patients were not given a
SAPS II score if they were younger than 18 years,
had undergone post-cardiac surgery, or suffered
burns.

Our source population was data collected from
38,257 adult patients admitted during the period
2008–2010. SAPS II scores were reported for each
patient, along with age, ICU length of stay (LOS),
vital status at hospital discharge, time on respiratory
support, type of admission (planned surgery, acute
surgery, or acute medical), gender, and hospital cat-
egory. Of the source population, 3970 were excluded
because of missing SAPS II scores, and 29 were
excluded because the LOS was missing. A further
2552 patients were excluded because they were
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readmitted to the ICU several times during the same
hospital stay or transferred to other hospitals. Trans-
fers and readmissions were excluded to avoid
counting the same individual more than once.
Finally, 994 patients were excluded because of
missing values for: vital status, duration of respira-
tory support, type of admission, or gender. This left
a study population of n = 30,712 patients. Patient
characteristics are showed in Table 1.

Statistical analysis
We compared two models in this study. Model A
was the original SAPS II model that is based on a
multicenter study with international data from the
early development.5 Model B was a first-level
customization of Model A, i.e., a modification of the
equation used to describe the relationship between
SAPS II scores and predicted hospital mortalities.
Hence, the predicted risk of death for a given SAPS
II score was

PRD
logit

logit=
+
e

e1

where

logit SAPS II SAPS II= + × ( ) + × +( )β β β0 1 2 1ln (1)

The β’s represent the weights assigned to each term
in the equation and were estimated from the NIR
data. Thus, both models were fit using this logistic
regression approach where an extra term was added

to adjust for non-linearity of the logit function. For
Model A, the equation was as follows:5

logit SAPS II
SAPS II

A = − + × ( )
+ × +( )

7 7631 0 0737
0 9971 1
. .
. ln

To evaluate model performance reliably, different
data sets should be used when designing and validat-
ing the model. Therefore, the NIR data set was
divided into a training set, used for model design,
and a validation set. The training set consisted of two
thirds of the NIR patients, chosen at random, and the
remaining third was used for validation. To assess
how variability in the data affected the outcome, we
also applied a fivefold cross-validation approach.18

This involved splitting the training set into five equal
parts, and fitting Model B onto data consisting of four
of those parts. The remaining part was used for vali-
dation. Repeating this procedure five times, so that
all parts were used for validation, we were able to
evaluate how variation within the training set could
affect the performances of Model A and Model B.

In order to evaluate the performance of Model A
and Model B, three aspects were considered: dis-
crimination, calibration, and uniformity of fit.
Model discrimination is commonly evaluated by
calculating the area under the receiver operating
characteristic (ROC) curve.19 This number, here
referred to as aROC, is the probability that a
random patient who died had a higher SAPS II
score than a random patient who survived. Prob-
abilities close to 1 indicate good discrimination.
Because the aROC is based on the untransformed
SAPS II scores, Model A and Model B were iden-
tical regarding model discrimination.

A model is well calibrated if the predicted pro-
portion of deaths among patients within different
SAPS II strata is close to the observed proportion. To
evaluate the calibration of Model A and Model B, we
used Hosmer–Lemeshow’s C statistic,20 the Brier
score,21 and Cox’s calibration regression.22 In order
to calculate C, patients were sorted according to
SAPS II scores and divided into 10 deciles. The 10%
with the lowest SAPS II scores were in the first
decile, the next 10% were in the second decile, and
so on. Now, we had

C
O E

N p p
g g

g g gg

=
−( )

−( )=
∑

2

1

10

1

where Og and Eg were the observed and predicted
number of deaths in decile g, respectively. Ng was the
number of patients in decile g, pg was the predicted

Table 1

Characteristics of study population.

Variable Characteristic Sample

n Total number 30,712
Age (years) Mean (SD) 63.2 (18.2)

Median (IQR) 66.0 (52.4,77.3)
Sex, % Male 56.7

Female 43.3
SAPS II Mean SAPS II (SD) 36.8 (18.2)

Median SAPS (IQR) 34.0 (24,47)
Length of stay, days Mean (SD) 4.3 (6.8)

Median (IQR) 2.0 (1.1,4.3)
Type of admission, % Medical 55.8

Acute surgery 31.7
Planned surgery 12.6

Hospital category, % Primary 36.7
Secondary 39.8
Tertiary 23.5

Survival status, % Died ICU 12.7
Died ward 6.7
Survived hospital 80.6

SD, standard deviation; IQR, inter-quartile range.
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risk of death in decile g, and ∑ =g 1
10 indicated that the

sum was taken over all 10 deciles. As C has a χ2

distribution with 8 degrees of freedom, each value of
C corresponds to a P-value. Low values of C indicate
well-calibrated models and yield high P-values.

The Brier score, B, is calculated as follows,

B
n

PRD yi i
i

= −( )
=
∑1 2

1

n

where PRDi is the predicted risk of death of
individual i, and yi is the observed outcome (1 if
death or 0 if survival). The sum is over all n
individuals. B is always between 0 and 1, where 0
denotes perfect prediction. According to Redelmeier
et al.,23 the standard deviation of B is

SD B PRD PRD PRDi i i
i

( ) = −( ) −( )
=
∑1

1 1 2
2

2

1n

n

allowing us to calculate 95% confidence intervals for
B. Note that the Brier score does not evaluate the
calibration alone, but is a measure of overall
accuracy of predictions. Still, in our scenario,
because discrimination is the same for both models,
and their performances are compared using the
same data set, an improved Brier score implies
improved calibration.

Performing Cox’s calibration regression means
fitting the model

true logit predicted logit= + ×α β

using logistic regression. Perfect prediction yields
α = 0 and β = 1. This would indicate that the true
logit is equal to the predicted logit. Also, if we
condition on β = 1, so that

true logit predicted logit= +α

the two logits are separated by a shift of α. Hence, if
α = 0 conditioned on β = 1 (α = 0 | β = 1), calibration
is perfect. A negative α indicates that the predicted
mortality is too high, and a positive α that the
predicted mortality is too low.

A good mortality prediction model should
perform similarly across different subgroups of
patients. To evaluate uniformity of fit, we considered
the standardized mortality rate,

SMR
O
E

= (2)

where O and E are the observed and predicted
hospital mortalities, respectively. Hence, a

standardized mortality ratios < 1 suggests that the
predicted mortality is higher than that actually
observed. SMRs were obtained across age groups
(< 40, 40–59, 60–69, 70–79, and 80+), types of
admission (planned surgery, acute medical, acute
surgery), lengths of stay at the ICU (< 1 day, 1–3
days, 4–29 days, and 30+ days), and hospital
categories (primary, secondary, and tertiary). An
SMR close to one indicated good fit. Using Byar’s
approximation,24 95% confidence intervals for the
SMRs could be calculated. The lower limit was

SMR
O

O O
E

L =
− −⎛

⎝
⎞
⎠1

1
9

1 96
3

3.

and the upper limit was

SMR
O

O O
E

U =
+( ) −

+( )
+

+
⎛
⎝⎜

⎞
⎠⎟

1 1
1

9 1
1 96

3 1

3
.

Uniformity of fit can be assessed by dividing the
SMR for Model B on that of Model A. If this ratio is
equal across subgroups, the uniformity of fit has not
changed.

All analyses were conducted using R version 3.0.2
(R Core Team, R Foundation for Statistical Comput-
ing, Vienna, Austria).

Ethics and prior publication of data
NIR is one of the Norwegian national medical
quality registries, and the data used were routinely
and anonymously collected. Therefore, the regional
ethics committee (Western Norway Regional Health
Authority, Norway) waived approval. No consent
was needed.

Data have not been previously published.

Results
Figure 1 (left) shows the observed mortality in the
validation set and the relationship between SAPS II
scores and predicted hospital mortalities for the old
and the revised prediction models. For Model B,
fitted on the training set, the equation corresponding
to (1) was

logit SAPS II
SAPS II

B = − + × ( )
+ × +( )

9 0917 0 0325
1 6698 1
. .
. ln

Model A was generally too pessimistic regarding
the likelihood of survival. The black line in Fig. 1 (left)
represents Model B, where predicted mortalities are
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lower than those of Model A (grey line) for all SAPS
II scores. Model B is closer to the observed mortality,
particularly for SAPS II scores between 40 and 100
where Model A clearly overestimates mortality.
These findings are also supported by Fig. 1 (right),
which shows calibration plots for both models.

Note that in Fig. 1 (left), the observed mortality
appears to vary more for patients with the highest
SAPS II scores. This is because the observed mortali-
ties of patients with extreme SAPS II scores are aver-
ages of only a few observations. For example, only
two patients had a SAPS II score of 100, and both
died. Hence, the observed mortality was 1. If one had
survived, the observed mortality would have been
0.5, and if both had survived, it would have been 0.

The aROC was 0.83 for both Model A and Model
B (Table 2). Values above 0.80 indicate that discrimi-
nation is very good.25,26

Table 2 presents the results of the validation pro-
cedures. As seen, both the fivefold cross-validation
and the validation on the validation set of Model A
suggested poor calibration, with values of C corre-
sponding to P-values lower than 0.001. For Model B,
the fivefold cross-validation was better than the vali-
dation on the validation set, which gave a P-value of
0.005. For the cross-validation, the mean of the five
P-values was reported in Table 2.

More important is the fact that C dropped from
the enormous 689.07 for Model A to the more mod-
erate 22.01 for Model B. Further, the confidence
intervals of the Brier scores did not overlap (0.116–
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Fig. 1. Left: SAPS vs. mortality. The grey line represents the mortality predicted by Model A, while the black line is the mortality predicted
by Model B. Circles are observed mortalities for each SAPS II score. Circle size is proportional to the number of patients with that SAPS
II score. The mountain-like grey shape at the bottom shows the distribution of patients according to SAPS II score. Right: calibration plot
for Model A and Model B. The grey shape is the distribution of patients according to observed risks.

Table 2

Validating the calibration of Model A and Model B.

Model A Model B

HL-test
Fivefold cross-validation

Mean P-value < 0.001 0.306
Standard deviation < 0.001 0.250

Validation set
HL’s C 689.07 22.01
P-value < 0.001 0.005

Brier score
B 0.131 0.120
95% confidence interval 0.127–0.134 0.116–0.123

Cox’s calibration regression
α −0.747 −0.093
β 0.735 0.921
α | β = 1 −0.630 −0.009

aROC 0.83 0.83

HL-test: P-values > 0.05 indicate good calibration.
HL-test: Hosmer–Lemeshow’s C. C is χ2-distributed with 8
degrees of freedom.
Brier score: Lower values indicate better calibration.
Cox’s calibration regression: α should be close to 0 and β should
be close to 1.
aROC: Area under receiver operating characteristic curve.
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0.123 for Model B, 0.127–134 for Model A). Finally,
applying Cox’s calibration regression α was closer to
0 and β was closer to 1 for Model B (Table 2). All this
suggests that Model B was much better calibrated
than Model A. This finding is confirmed by visual
inspection of Fig. 1.

Figure 1 shows that Model B mortality estimates
were much closer to the observed mortalities. This is
also confirmed in Table 3, where Model A had SMR
values < 1 all over, and overestimated the mortality
in most subgroups, whereas Model B tended to be
more in line with observed data. Notable exceptions
were for patients aged 80 years and older, and for
those with length of state (LOS) < 1 day, where 1 was
contained in the SMR confidence intervals for Model
A, but not for Model B (Table 3). The 80+ patients
comprised 19% of the patient population in the vali-
dation set, and the patients with the shortest LOS
comprised 23%. Dividing SMR for Model B with
that of Model A yielded ratios of 1.33–1.38 for all the
different subgroups. Hence, the uniformity of the fit
did not change after recalibration of Model A.

Discussion
This study confirms that mortality predictions can
be improved by customizing the original SAPS II

model.5 The Brier score was lower for Model B than
for Model A, and the confidence intervals for Brier
scores did not overlap (Table 2). Also, the coeffi-
cients of Cox’s calibration regression were closer to
α = 0 and β = 1 for Model B than for Model A
(Table 3). Hosmer–Lemeshow’s C was reduced from
689.07 (Model A) to 22.01 (Model B), which is sub-
stantial despite the P-value being less than 0.05.
When analyzing large data sets, such as NIR, the C is
expected to yield low P-values regardless of model
fit.27,28 In fact, some of the reason that the fivefold
cross-validation yielded high P-values (Table 2) may
be that they were based on smaller data sets than the
validation set. Discrimination was good using both
models. With respect to uniformity of fit, both
models performed similarly. The ratios of SMRs
were approximately the same across all subgroups.
This is as expected for calibrations based on first-
level customization, because the underlying SAPS II
scores remain unchanged. Model B outperformed
Model A regarding model fit, although Model B
tended to overestimate the mortality for patients
younger than 70 years, and underestimate the mor-
tality for those older than 80 years.

In accordance with the general literature, we
found that Model A was poorly calibrated.9–13 This is
as expected, given the advances in medical care in

Table 3

Standardized mortality ratios (SMR) across different groups of patients for Model A and Model B in validation set. The column ‘Ratio’
contains SMRs for Model B divided by SMRs for Model A. Age was measured in years, and LOS in days.

Model A Model B

SMR (95% CI) SMR (95% CI) Ratio n

Total 0.73 (0.70,0.76) 0.99 (0.95,1.04) 1.36 10,237
Age

18–39 0.62 (0.50,0.76) 0.85 (0.69,1.04) 1.37 1392
40–59 0.59 (0.52,0.66) 0.80 (0.71,0.90) 1.37 2379
60–69 0.65 (0.58,0.72) 0.88 (0.79,0.97) 1.36 2218
70–79 0.74 (0.68,0.81) 1.01 (0.93,1.10) 1.36 2340
80+ 0.93 (0.86,1.01) 1.26 (1.17,1.37) 1.36 1908

Type of admission
Planned surgery 0.65 (0.55,0.76) 0.88 (0.75,1.04) 1.36 1367
Acute medical 0.77 (0.73,0.81) 1.04 (0.98,1.10) 1.35 5589
Acute surgery 0.68 (0.63,0.74) 0.94 (0.86,1.02) 1.37 3281

Length of stay (LOS)
< 1 0.94 (0.87,1.02) 1.25 (1.15,1.35) 1.33 2304
1–3 0.66 (0.62,0.71) 0.91 (0.84,0.97) 1.37 5306
4–29 0.66 (0.60,0.72) 0.91 (0.83,0.99) 1.37 2484
30+ 0.78 (0.56,1.05) 1.07 (0.78,1.44) 1.38 143

Hospital category
Primary 0.78 (0.72,0.84) 1.06 (0.98,1.15) 1.36 3699
Secondary 0.74 (0.69,0.79) 1.00 (0.94,1.07) 1.35 4112
Tertiary 0.66 (0.60,0.72) 0.90 (0.82,0.99) 1.37 2426

Sex
Female 0.74 (0.69,0.79) 1.01 (0.94,1.08) 1.36 4462
Male 0.72 (0.68,0.77) 0.98 (0.93,1.04) 1.36 5775

CI, confidence interval; LOS, length of stay.
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general, and intensive care in particular, since
Model A was developed.5 To overcome the problem
of poor calibration, customization of Model A has
become a popular exercise.2,12,14,29 This is the first
time Model A has been calibrated to NIR data, and
we now have the tools handy to perform
recalibration more often. It would be better to base
the calibration on newer data, but the cohorts from
2008 to 2010 were the most recent in NIR available to
us. Still, this is a clear improvement of Model A,
which has been the standard in Norway so far.

Other studies that applied first-level
customization to SAPS II, also reported differences
in SMR across age groups.5,8,30 Aegerter et al.,8 Le
Gall et al.,15 and Apolone et al.30 all underestimated
the risk of dying for the oldest patients they studied.
However, for Aegerter et al., the SMR was not sig-
nificantly different from 1. Further, both Aegerter
et al. and Le Gall et al. significantly overestimated
the mortality for the youngest patients, which is
similar to the results presented in Table 3.

A limitation of this study is that second-level
customization was not performed. Second-level
customization is when the underlying variables are
changed or differently weighted. This approach
requires more work and access to other types of data
and is therefore hard to generalize. However,
models based on second-level customization tend to
perform better than their first-level counter-
parts.8,15,16 For example, the variation in SMR across
age groups could be rectified by weighting age dif-
ferently before obtaining the SAPS II scores.

We focused on first-level customization in order
to keep our results as general as possible, although
the case-mix will influence the performance of the
model across settings. Model B will be more appli-
cable in the Nordic countries and less in countries
with different epidemiological profiles. However, if
there is no locally calibrated SAPS II model avail-
able, Model B may be used, with caution, as a rough
prognostic indicator.

Local calibrations of SAPS II are regularly per-
formed all over Europe.2,10,12,29–31 This is necessary in
order for SAPS II-based mortality predictions to
remain meaningful and to keep up with medical
advances. As mentioned, it has been argued that
SAPS II should be recalibrated every second or third
year.14 As an attempt to improve SAPS II and create
a new international benchmark, SAPS 3 was created.
However, several validation studies have ques-
tioned whether SAPS 3 is indeed an improvement of
SAPS II regarding discrimination, uniformity of fit,
and calibration.12,13,17 We therefore argue that

recalibrating SAPS II in an international multicenter
study could be a better alternative than changing to
SAPS 3. This has the advantage of keeping previous
results comparable with new research and allows
for better tracking of changes in ICU performance
over time. For example, it may be of interest to know
how the mortality risk has changed for a patient
with a SAPS II score of 50 for the last 20 years, and
if the change is similar across settings. Data are
already routinely collected in many countries. An
international benchmark will allow for different set-
tings to be evaluated according to an international
standard. Variations in ICU performance between
countries are inevitable, but a regularly recalibrated
international benchmark may shed a light on some
of the reasons for this variation and allow for
improvements to be made.

Conclusion
The updated version of SAPS II, Model B, had the
same discrimination and uniformity of fit as Model
A, but was better calibrated. Introducing Model B
into Norwegian ICUs may improve precision in
decision-making at multiple levels. It will yield a
more realistic benchmark in the assessment of ICU
performance. If SAPS II is used in clinical decisions,
with caution and good clinical judgment, these deci-
sions will have a more reliable risk estimate than
previous versions of SAPS II could provide.
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