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Summary 

Introduction:  

Anterior cruciate ligament (ACL) injuries are common, and surgery is often performed to 

improve function. Many factors have been identified that may influence the risk of a poor 

outcome following ACL reconstruction (ACLR). However, putting those risk factors into 

context and applying them to an individual patient to accurately estimate their specific risk of a 

poor outcome is challenging. The ability to accurately quantify risk at a patient-specific level is 

desirable as it can lead to more informed discussions and surgical decision-making, and can guide 

efforts at decreasing risk.  

 

Machine learning is a branch of artificial intelligence that enables the development of algorithms 

capable of predicting clinical outcomes based on analysis of large databases. These novel 

techniques can tease out relationships between variables that may be more complex than can be 

realized through traditional statistical analyses. The purpose of this thesis was to apply machine 

learning analysis to the Norwegian Knee Ligament Register (NKLR) and Danish Knee 

Reconstruction Registry (DKRR) to develop easy-to-use models capable of predicting post-

operative outcomes (revision surgery and inferior patient reported outcome) for patients 

undergoing ACLR and identify the factors that are most important for making the outcome 

predictions. The hypothesis was that this analysis would lead to the development of accurate and 

externally valid clinical prediction tools that clinicians could use to predict the risk of revision 

surgery or inferior patient reported outcome for their patients undergoing ACLR. 

Methods:  

Four methods of supervised machine learning were performed on the NKLR data that had first 

been split into training and test sets. In Paper I, models were trained to predict revision surgery 

and in Paper II the models were trained to predict inferior patient reported outcome, defined as 

a score of less than 44 on the Knee Injury and Osteoarthritis Outcome Score (KOOS) Quality of 

Life subscale (QoL). In Paper III, the DKRR data was merged with data from the NKLR and 

four methods of supervised machine learning were performed on the combined dataset with the 

goal of improving the accuracy of the revision prediction model through the addition of more 

data. The revision prediction model developed using the NKLR-only data in Paper I was 

subsequently tested on the DKRR data (Paper IV) and on patients from the STABILITY I 

randomized controlled trial (Paper V) to determine external validity of the model on different 
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patient groups. Performance of the supervised machine learning models was evaluated using 

measures of discrimination and calibration in all cases.  

 

In Paper VI, unsupervised machine learning was performed on the combined NKLR and DKRR 

dataset to generate distinct clusters of patients with similar intra-cluster characteristics. The 

optimal number of clusters was determined via a combination of data-driven and domain 

knowledge assessment. The clusters were then interpreted through the aid of SHapley Additive 

exPlanations (SHAP) analysis to determine the distinguishing characteristics of each cluster and 

enable future patients to be assigned to the most appropriate cluster. Revision rates of each 

cluster were then evaluated to determine if clusters had varying risks of revision surgery 

following primary ACLR.     

Main results:  

Supervised machine learning analysis of the NKLR produced prediction models with area under 

the receiver operator characteristic curve (AUC) and concordance (two measures of 

discrimination) values of 0.67-0.69. The models were generally well-calibrated, with modest 

evidence of mis-calibration only for the two-year prediction of revision risk. Factors required for 

revision surgery prediction included: graft choice, femoral fixation device, pre-operative KOOS 

QoL score, time between the injury and surgery, and age at the time of surgery. Factors required 

for prediction of inferior patient reported outcome two-years after ACLR were: pre-operative 

KOOS subscale scores, grade of cartilage injury, activity leading to injury, previous ipsilateral 

knee surgery, Body Mass Index (BMI) at surgery, and age at injury. Both algorithms were 

converted into easy-to-use online calculators.  

 

Accuracy of the revision prediction model did not improve when the DKRR data was merged 

with the NKLR data. The discrimination performance of the revision model did not change 

when it was evaluated using the DKRR patients, while the calibration worsened for the one-year 

and five-year predictions. When the revision model was evaluated on the STABILITY I cohort, 

the model performed best, with discrimination and calibration similar to the original model 

testing, when the addition of a lateral extra-articular tenodesis (LET) to a hamstring tendon 

autograft (HT) ACLR was entered into the algorithm as a bone-patellar tendon-bone autograft 

(BPTB). However, the discrimination value confidence interval was wide.  
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Five clusters were found to be optimal and were subsequently created through k-prototypes 

unsupervised machine learning analysis. Each cluster demonstrated a unique revision rate and the 

clusters were divided into high-risk (Cluster 1, revision rate: 9.9%), medium-risk (Cluster 2, 

revision rate: 6.9%), and low-risk (Clusters 3-5, revision rate: 3.1-4.7%) groups. A tree diagram 

was created to facilitate rapid risk stratification based on three variables: age, graft choice, and 

KOOS Sports subscale score. 

Conclusion:  

The most significant findings from these studies are: 1) machine learning analysis of the NKLR 

and DKRR enabled the development and validation of prediction models that demonstrated 

moderate accuracy for predicting revision surgery and inferior outcome following ACLR and 

identified the most important factors used to predict these outcomes, 2) a rigorous approach to 

clinical prediction modeling has been described, laying the foundation for future innovation, 3) 

more work is needed to evaluate the performance of the prediction models on patients from 

outside Scandinavia and to determine the threshold for clinical relevance regarding ACLR 

outcome prediction, 4) the development and validation of clinical prediction tools may be limited 

by both the quality and quantity of the available data, and 5) the data collected by the registries 

should be expanded to include more variables that have been associated with outcome. 

 

Although these studies enabled the development of several risk estimation tools for patients 

undergoing ACLR, the performance of these models was limited by the data contained within 

the registries. More specifically, they were limited by the lack of some important relevant 

variables associated with outcome such as pre-operative knee laxity, posterior tibial slope, and 

rehabilitation factors. The choice of outcomes (revision surgery and low KOOS scores) may 

have also limited the model performance. In addition, external validation outside of Scandinavia 

was limited by poor data quantity in the STABILITY I cohort. Evolution of the national knee 

ligament registries to capture more variables is required to improve the ability to predict outcome 

using these databases. Overall, the processes outlined in these studies can serve as a guide for the 

pursuit of clinical prediction models in the future; however, the current clinical utility of the 

ACLR prediction models remains unknown. Prior to widespread adoption and implementation 

of these prediction algorithms, their performance relative to predictions made by surgeons must 

be ascertained. This represents an important next step because until it is known how well 

surgeons can predict outcome, it will never be known if prediction tools driven by artificial 

intelligence confer an advantage and, therefore, are clinically relevant.   
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Introduction 

Background 

Physicians strive to optimize the outcome for each individual patient they care for. To 

accomplish this, the physician evaluates the information available to them to first identify the 

most likely diagnosis and then determine the most appropriate course of action, which may 

include further investigation or the initiation of a treatment. The data used to inform these 

decisions often come from a wide variety of sources which may include the patient history, 

physical examination, and available imaging or laboratory studies. In addition, physicians must 

simultaneously consider any potential barriers or risk factors that may impact the eventual 

outcome and strategize ways to minimize these challenges.  

 

In essence, physicians develop an algorithmic approach to patient care based on pattern 

recognition that is influenced, and limited, by their own experience and understanding of the 

best available evidence. Although these clinical decisions may occasionally be relatively simple 

and straightforward, there are often nuances that require a more individualized approach. In 

orthopaedic surgery, anterior cruciate ligament (ACL) ruptures represent one condition that 

demands such an approach in the pursuit of optimal outcome.    

 

The ACL is a central stabilizer of the knee that is important for maintaining normal knee 

biomechanics and function. Injuries to the ACL are common and can lead to persistent pain, 

instability, and significantly increased risk of post-traumatic osteoarthritis3,4. Surgical 

reconstruction of the ACL (ACLR) is often performed to restore knee function and stability. In 

the United States, more than 120,000 ACL reconstructions are performed every year in young 

athletes and rates have been rising5–9. This observed increase has been tied to widespread growth 

in sports participation and specialization and is expected to continue. With increased ACL 

injuries, the associated societal costs are also rising. Cost-utility analyses have reported lifetime 

costs of greater than $30,000 for those who have ACLR and greater than $80,000 for those 

treated non-operatively10. 



Introduction 

 

12 

 

 

 

Anterior cruciate ligament injuries primarily affect young, active persons who have a desire to 

return to an active lifestyle or sports participation and are often entering or are in the early stages 

of their careers. Unfortunately, despite many advancements in surgical and rehabilitation 

techniques over time, the failure rate of ACLR remains a concern – the risk of a patient 

experiencing a second ACL injury (ipsilateral or contralateral) following ACLR has been reported 

to be between 8-35%11–13. Further, outcomes following revision ACLR have been found to be 

inferior when compared with primary ACLR14–18. Due to the high prevalence and potential 

morbidity of these injuries, the study of ACLR outcomes and the risk factors associated with 

inferior outcomes has garnered substantial attention in the literature as surgeons strive to 

optimize results for their patients19. However, individual outcome optimization remains limited 

due to the inability to accurately predict the expected outcome of treatment strategies. 

The Challenge with Anterior Cruciate Ligament Reconstruction 

Outcome Prediction 

Accurate prognostication for patients undergoing ACLR is a crucial component of individualized 

outcome optimization, enabling the identification of patients who are at an increased risk of 

experiencing failure. This information can be applied in a clinical setting to guide discussions 

with patients, align expectations with reality, and may influence surgical decision-making and 

post-surgical care. From a research perspective, risk quantification also enables the evaluation of 

targeted strategies aimed at reducing risk overall and particularly among those deemed high-risk.  

 

Several intrinsic and extrinsic factors have been identified that place individuals at risk for 

sustaining an ACL injury20. These include female sex, hormones, landing mechanism, 

ligamentous laxity, anatomical variation, and neuromuscular control during activity20. 

Additionally, the identification of risk factors associated with failure of ACLR has been the focus 

of multiple studies in the orthopaedic literature21. 

 

Young age and graft-related factors are some of the most consistently reported risk factors 

associated with ACLR graft failure21. Analysis of data from the Norwegian, Swedish, and Danish 
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knee ligament registries have identified young age, high body mass index (BMI), graft diameter, 

and graft type as risk factors associated with failure of ACLR, defined as revision surgery22,23.  

The finding that young age and small graft size increase the risk of ACLR revision was also 

reported by Magnussen et al24. Similarly, the Multicenter Orthopaedic Outcomes Network 

(MOON) group reported that young age, high activity level, and the use of allograft were 

associated with higher odds of a graft failure11.  

 

The association between age and graft failure after ACLR was explored further by Grindem et 

al25. They found that when adjusting for return to pivoting sports within one year after surgery 

and performance on return to sport functional criteria, age was no longer an independent risk 

factor. The authors opined that adequate rehabilitation and return to sport are confounders that 

can explain the often-cited association between age and ACLR failure. In a previous study, 

Grindem et al. also highlighted the importance of completing a full rehabilitation protocol prior 

to return to sport26. They reported an ACLR failure rate of 38.2% among patients who did not 

pass both time-based and functional return to sport criteria compared with only 5.6% who did.  

The importance of adequate rehabilitation and functional readiness for return to sport was also 

identified by Kyritsis et al., finding a four-times higher graft failure rate among athletes who did 

not complete their return to sport functional criteria27. Overall, post-operative rehabilitation 

seems to significantly impact the outcome of ACLR.  

 

Several other studies from the national knee ligament registries in Scandinavia have evaluated the 

factors associated with subsequent ACLR revision. In their review of patients from the 

Norwegian Knee Ligament Register (NKLR), Persson et al. found that the use of hamstring 

tendon autograft (HT) was associated with higher revision surgery rates than bone-patellar 

tendon-bone autograft (BPTB)28, and that revision rates were highest when the combination of 

suspension fixation on the femur and an absorbable interference screw on the tibia were used29. 

Subsequent analysis of the combined Scandinavian knee ligament registry data revealed similar 

findings30,31. Interestingly, following the publication of these studies practice patterns changed 

substantially in Norway. Prior to 2013, HT was used in 73% of all primary ACLR recorded in the 

NKLR28. In contrast, the use of HT dropped to 33% in 2016, with BPTB accounting for 63% of 

all primary ACLR that year32.  
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More recently, an increased posterior tibial slope has been suggested as a possible risk factor for 

ACL injury and ACLR failure. Hashemi et al. found that posterior tibial slope, in particular 

involving the lateral side, was increased in patients who sustained an ACL injury when compared 

with uninjured controls33. Jaecker et al. also reported increased posterior tibial slope both 

medially and laterally was observed to be an independent risk factor for ACLR graft failure34. A 

proposed cutoff of 12° has been made for the posterior tibial slope, above which the risk of 

ACLR graft rupture may be significantly increased, and this finding may be even more 

pronounced in adolescents35,36. The influence of the posterior tibial slope was summarized in a 

recent systematic review and meta-analysis by Duerr et al37. They aggregated 15 studies that 

compared posterior tibial slope in those with and without an ACL graft failure and found that 

the posterior tibial slope was increased significantly in the failure groups. Despite a growing 

number of studies that have suggested this association between increased tibial slope and ACLR 

failure, a few studies have challenged this conclusion and the true impact of posterior tibial slope 

on ACLR outcome remains uncertain38–40.  

 

In addition to the posterior tibial slope, other anatomic risk factors for ACL injury and failure of 

primary ACLR have been suggested. A narrow femoral intercondylar notch width has been 

identified as a risk factor for ACL injury41–43. Hughes et al. have subsequently reported a five-

times higher ACL graft failure rate in patients with a narrow intercondylar notch, which they 

defined as a width less than 16 mm44. Increased knee hyperextension, defined as greater than 5° 

of passive knee hyperextension on the contralateral side, was also identified as a risk factor for 

graft failure after ACLR by Guimarães et al. in their study45.   

 

The multitude of risk factors for ACLR revision or re-rupture were recently summarized in a 

systematic review and meta-analysis by Zhao et al21. The authors found that these factors include 

male sex, young age, low BMI, a family history of revision or failure of ACLR, white race, 

increased tibial slope, high-grade pre-operative knee laxity, higher baseline Marx activity level, 

return to a high activity level or sport, surgery performed less than one year from injury, the 

presence of a concomitant medial collateral ligament (MCL) injury, the use of an anteromedial or 

transportal technique, HT or allograft, and a smaller graft diameter. However, the ability to 
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synthesize this information and accurately quantify a patient’s risk of experiencing subsequent 

graft failure leading to revision surgery and other inferior outcomes following ACLR remains 

challenging and imprecise due to the complex interactions between these many factors that 

influence and contribute to an individual’s outcome. 

Machine Learning for Outcome Prediction 

Artificial intelligence, and in particular machine learning, has been identified as a potential 

solution for the problem of outcome prediction. Over the past several years, artificial intelligence 

applications have become ubiquitous throughout society. Self-driving cars are being tested on 

roads throughout the world. Voice recognition software has become commonplace on our 

phones and in our homes. Generative text programs have passed medical and legal licensure 

examinations. Targeted content and advertisements are now a routine expectation on social 

media and web browsers. However, despite these rapid advancements in our day-to-day lives, 

there is a paucity of clinically relevant artificial intelligence applications within the field of 

orthopaedics and sports medicine.  

 

The widespread capabilities of artificial intelligence and machine learning have recently become 

more appreciated in orthopaedics and sports medicine. This is the age of big data, and a 

promising feature of machine learning is its capacity to use historical clinical data to inform 

future care delivery46. One of the most important areas in which these innovations can impact 

the field is related to the use of machine learning to facilitate outcome prediction. Predictive 

models driven by machine learning have the ability to provide synthesized data, validated 

predictions, and the basis for clinical decision-making to health care providers.  

 

Broadly speaking, the term “artificial intelligence” refers to any technique in which machines are 

said to mimic human behaviour1. This often involves automation with minimal human 

programming. Within artificial intelligence is the subset known as “machine learning,” whereby a 

statistical model or algorithm is developed that can “learn” through experience and apply that 

knowledge to new or future data. A further subset within machine learning is called “deep 

learning,” which enables more complex pattern recognition and automation using neural 

networks (Figure 1).  
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Figure 1: Artificial intelligence and its subsets machine learning and deep learning. Reproduced with permission from Pareek 

A, Ro DH, Karlsson J, Martin RK. Machine learning/artificial intelligence in sports medicine: state of the art and future 

directions. J ISAKOS. 2024;9(4):635-644. doi:10.1016/j.jisako.2024.01.0131. 

 

Although the concept of machine learning has been around since the mid 20th century47–49, it is 

only recently that improved computational power and data availability has enabled the 

advancement in algorithm creation and applications throughout society1,50,51. These algorithms 

can be trained to identify patterns in a dataset and make predictions through several different 

“learning” techniques. The three main branches of machine learning are supervised learning, 

unsupervised learning, and reinforcement learning (Figure 2)2.  
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Figure 2: The three main branches of machine learning – supervised, unsupervised, and reinforcement learning. Reproduced 
with permission from Pruneski JA, Williams RJ, Nwachukwu BU, et al. The development and deployment of machine 
learning models. Knee Surg Sports Traumatol Arthrosc. 2022;30(12):3917-3923. doi:10.1007/s00167-022-07155-42.  

 

Supervised learning can be thought of as an algorithm that learns from labeled examples52. The 

model is provided with all the variables in a dataset, which are labeled as either "predictors" 

(input features) or "outcomes" (target variables). By training on the examples in the dataset, the 

model learns to recognize the relationships between predictor variables and the outcome of 

interest. The goal is to generalize this knowledge to make accurate predictions on new, unseen 

data. In supervised learning, classification is used to predict discrete or categorical outcomes, 

while regression is used to predict continuous numeric values. 

 

In contrast, unsupervised learning is a type of machine learning where the model is given data 

without labeled outcomes or target variables53. Unlike supervised learning, which relies on known 

"predictors" and "outcomes," unsupervised learning has no predefined labels to guide the model. 

Instead, the model analyzes the data to identify hidden patterns or groupings within it. This is 

particularly useful for exploratory analysis or finding natural clusters in data, such as groups of 

patients that share similar characteristics. Two common applications of unsupervised learning are 

clustering, where the model groups similar data points together, and dimensionality reduction, 

which simplifies data by reducing the number of features while retaining important information. 

Although unsupervised learning is not applied to predict specific outcomes, the approach may be 
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used to discover structure and relationships within unlabeled data and, when applied to health 

care data, may identify groups or clusters of patients with differing outcome or risk profiles. 

 

Reinforcement learning is the third type of machine learning where an algorithm learns to make 

decisions by interacting with an environment1,54,55. Unlike supervised learning, which learns from 

labeled data, or unsupervised learning, which finds patterns in unlabeled data, reinforcement 

learning is driven by a system of rewards and penalties. The algorithm takes actions in the 

environment, receives feedback in the form of rewards (positive feedback) or penalties (negative 

feedback), and uses this feedback to improve its future actions. The goal of reinforcement 

learning is for the model to maximize cumulative reward over time, developing an optimal 

strategy or policy for the task, such as playing a game, managing resources, or controlling a 

robot.  

 

In recent years, machine learning has driven significant breakthroughs in medical outcome 

prediction. Models trained on large datasets of medical records and imaging data have enabled 

highly accurate predictions in diverse areas. Models have been developed that can detect early 

signs of cancer with accuracy on par with or better than human radiologists56,57, and to help 

predict in-hospital mortality due to sepsis58. Similarly, predictive models are also being used to 

identify patients at high risk of developing chronic conditions like heart disease, enabling 

proactive intervention59. With these and many other advancements has come a lot of enthusiasm 

surrounding the possibilities of machine learning within orthopaedic surgery. However, clinically 

useful orthopaedic applications of the approach have lagged behind the other medical 

specialties60,61.  

Machine Learning and National Registries to Predict ACL 

Reconstruction Outcome 

One of the barriers to the successful implementation of machine learning into healthcare is the 

scarcity of relevant large data repositories62. National knee ligament registries therefore present 

an opportunity for exploration given their comprehensive data collection and labelling systems. 

The NKLR was founded in 2004, representing the world’s first national registry focused on knee 

ligament surgery63. The Danish Knee Reconstruction Registry (DKRR) followed in 2005, and 
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both registries have been prospectively collecting data regarding cruciate ligament surgeries since 

their inception64.  

 

The knee ligament registries record patient demographic and injury details, information regarding 

the surgical findings and procedures performed, and most importantly, include long-term 

tracking of outcome65. Two primary outcomes are recorded in the registries – subsequent 

revision surgery and patient reported outcome measures (PROM). Patients in the registries are 

linked using their unique personal health identification number which enables the detection of 

any subsequent revision surgery, even if it is performed in another centre or with another 

surgeon, provided it occurs within the same country. Attrition due to death or emigration can 

also be measured using the unique patient identification numbers. The Knee Injury and 

Osteoarthritis Outcome Score (KOOS)66 is a PROM that is obtained before surgery and at pre-

specified timepoints following ACLR. In Norway, the KOOS is collected two, five, and ten years 

after ACLR, while in Denmark patients complete the questionnaire one, two, and ten years post-

operatively63,64,67,68. As a PROM, the KOOS has been validated for measuring knee function in 

patients with osteoarthritis and for other knee conditions, including ACL, chondral, and meniscal 

injuries66,69.  

 

Reporting to the registries is mandatory for surgeons, and data collection has demonstrated high 

levels of completeness and validity64,70,71. Registry data have been instrumental in guiding the 

management of ACL rupture through the publications of several previous studies that have 

enhanced understanding of ACL injuries, surgical techniques, and ACLR outcome22,28–31,68,72–75. 

These studies have identified that some factors such as patient age, along with graft choice and 

fixation technique, have been associated with variable and quantifiable rates of failure. However, 

it has remained unclear how these factors translate to the clinic in a patient-specific manner.  

 

Machine learning predictive models have the ability to consider all patient, injury, and surgical 

factors while generating not only a patient-specific likelihood of a poor outcome, but also the 

magnitude of effect for each variable. Additionally, machine learning algorithms using feature 

selection can narrow all variables down to those of highest importance while maintaining 

accuracy in the predictive capabilities. This is in contrast to non-machine learning analyses whose 
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validity relies on researchers’ underlying assumptions to correctly specify which variables to 

include, how they interact, and their functional relationship to the outcome. Therefore, the 

results of machine learning analysis can both assess variable interactions within a model and 

place importance onto these variables in quantifiable terms, allowing more accurate predictions 

to be obtained. 

 

This background establishes the basis for the hypothesis of this thesis: that machine learning can 

be applied to national knee ligament registry data in Norway and Denmark to enable the 

prediction of outcome following ACLR and to identify the most important factors used to 

predict these outcomes.  
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Specific Aims of the Dissertation 

The overall objective of this thesis is to apply machine learning to the NKLR and DKRR to 

create and validate machine learning algorithms capable of predicting outcome following ACLR 

with particular emphasis on ease of use and clinical applicability. 

 

The specific aims of the six papers were: 

1. To identify the most important risk factors associated with subsequent revision 

following primary ACLR using supervised machine learning analysis of the NKLR 

(Paper I) 

2. To develop a clinically useful prediction model to estimate patient-specific risk of 

subsequent revision following primary ACLR using supervised machine learning 

analysis of the NKLR (Paper I) 

3. To identify the most important risk factors associated with inferior patient reported 

outcome following primary ACLR using supervised machine learning analysis of the 

NKLR (Paper II) 

4. To develop a clinically useful prediction model to estimate patient-specific risk of 

inferior patient reported outcome following primary ACLR using supervised machine 

learning analysis of the NKLR (Paper II) 

5. To improve the accuracy of the revision prediction model through amalgamation of 

the NKLR and DKRR databases (Paper III)  

6. To evaluate the external validity of the NKLR revision prediction model when 

applied to patients from the DKRR (Paper IV) 

7. To evaluate the external validity of the NKLR revision prediction model when 

applied to patients from the STABILITY I randomized clinical trial (Paper V) 

8. To identify distinct subgroups (clusters) of patients within the NKLR and DKRR 

with similar characteristics using an unsupervised learning technique, and determine 

how the rate of subsequent revision ACLR differs between them (Paper VI) 

9. To develop a clinically relevant rapid risk-stratification algorithm based on the 

unsupervised learning clusters (Paper VI) 
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Materials and Methods 

Ethics 

All patients provide informed consent at the time of enrollment in the NKLR while informed 

consent is not required for the DKRR. All data are stored securely, and only de-identified 

information is made available for research. For this reason, the Data Inspectorate and Regional 

Ethics Committee in Norway and the General Data Protection Regulation in Denmark do not 

require additional ethical review board evaluation or approval for studies utilizing the registry 

data. Institutional review board (IRB) evaluation at the University of Minnesota similarly 

determined that the studies comprising this thesis were exempt from IRB review. For Papers I-

IV and VI, deidentified data from the NKLR and DKRR were transferred to the University of 

Minnesota research team for machine learning analysis and external validation. For Paper V, the 

revision prediction algorithm was shared with the Fowler Kennedy Sports Medicine Clinic 

research team at the University of Western Ontario for external validation using patients from 

the STABILITY I randomized controlled trial (RCT). The STABILITY 1 trial was previously 

approved by the Western Ontario Health Sciences Research Ethics Board (#104524) and no 

further IRB approval was necessary76.  

General Comments 

When planning the development and deployment of clinical outcome prediction models it is 

important to have a rigorous and methodical approach. This thesis reflects a stepwise approach 

that was taken intentionally, to instill confidence in the findings while establishing a framework 

for future projects of a similar nature. The studies were carried out in accordance with the 

Transparent Reporting of a multivariable prediction model for Individual Prognosis Or 

Diagnosis (TRIPOD) Statement77. This comprehensive set of recommendations for prediction 

model development or validation studies aims to improve the transparency of these studies 

through full and clear information reporting, independent of study methods. 

 

The first step involved the initial model development with internal validation using the NKLR 

(Papers I and II). Next, additional data (from the DKRR) was combined with the NKLR in an 
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attempt to improve the accuracy of the prediction model (Paper III). Once a working model was 

created, the third step was to assess the external validity of the model when applied to patients 

that were independent from the original patient population used to develop the algorithm 

(Papers IV and V). Finally, unsupervised learning was applied to the combined registry data to 

develop a risk stratification tool using a novel approach (Paper VI).  

 

Three distinct study methods were employed: prediction model development using supervised 

machine learning (Papers I-III), external validation (Papers IV and V), and unsupervised machine 

learning analysis (Paper VI). What follows is a discussion regarding the methodology that is 

grouped accordingly.  

Prediction Model Development (Papers I-III) 

The first three studies share a common goal of developing predictive models using supervised 

machine learning to forecast outcomes for patients undergoing ACLR. All studies utilized 

national knee ligament registry data, with the first two relying solely on the NKLR, while the 

third combined data from both the NKLR and the DKRR. The primary outcome in the first and 

third studies was the risk of subsequent revision ACL surgery, whereas the second study focused 

on predicting inferior PROMs using the KOOS Quality of Life subscale (QoL). This summary 

will explore the methods employed across the studies, with a focus on the patient populations, 

data preparation, machine learning model selection, missing data, and model performance 

evaluation techniques.  

Patient Population 

For Papers I and II, all patients from the NKLR who underwent primary ACLR between 

January 2004 and December 2018 were included. Paper III occurred later and subsequently 

extended the timeframe to December 2020 while combining data from the NKLR and DKRR to 

increase sample size. Patients with missing or incomplete outcome data were excluded, including 

those with missing revision status (Papers I and III) or missing KOOS scores (Paper II). 



Materials and Methods 

 

24 

 

 

Data Preparation 

The first step in a machine learning approach involves preparing the data for analysis. In 

supervised machine learning, this means variables must be defined as either “predictor” or 

“outcome” variables. All three studies considered a wide range of predictors related to patient 

demographics, injury characteristics, and surgical details that were available in the registries. In 

total, 24 predictor variables were considered for analysis in Paper I, 19 were considered for Paper 

II, and 17 were considered for Paper III. In addition to variables extracted directly from the 

registries, this also included composite indicators such as whether or not a patient was below the 

median KOOS in all five subscales (Table 1). The outcome variable for Papers I and III was 

revision surgery, while the outcome variable for Paper II was a KOOS QoL score <44, which 

has previously been defined as subjective failure73,78.  
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Table 1: List of variables from the Norwegian and Danish Knee Ligament Registries considered 
for machine learning analysis during prediction model development.  

Predictor Variables Considered for Machine Learning Analysis 

Age at injury Presence of PCL injury† 

Age at surgery Graft choice 

Sex Tibial fixation device 

Body Mass Index (kg/m2)‡ Femoral fixation device 

Pre-operative KOOS QoL subscale score Fixation device combination* 

Pre-operative KOOS Sports subscale score Injured side 

Below median on all pre-operative KOOS 

subscale scores* 

History of surgery to contralateral knee 

Activity leading to injury History of surgery to ipsilateral knee 

Presence of meniscus tear Time from injury to surgery 

Presence and grade of cartilage injury Pre-operative systemic antibiotics‡ 

Presence of MCL injury† Hospital geographic region† 

Presence of FCL or PLC injury† Hospital type (public or private)† 

* Composite measure 
† Not considered for analysis in Paper II or Paper III 
‡ Not considered for analysis in Paper III 
KOOS: Knee Injury and Osteoarthritis Outcome Score; QoL: Quality of Life; MCL: medial 
collateral ligament; FCL: fibular collateral ligament; PLC: posterolateral corner; PCL: posterior 
cruciate ligament  
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Machine Learning Analysis 

To properly train and test a machine learning model, the data must first be split into training and 

testing sets. The training sets are used to fit various machine learning models, while the test sets 

are reserved for model evaluation. These sets are separate from one another, meaning each 

patient appears in only one set and there is no crossover between these groups. For all three 

studies, the complete dataset was divided such that 75% of the data was placed into a training set 

while the remaining 25% was allocated to the hold-out test set. These divisions were performed 

randomly for each study, meaning the composition of the groups varied between studies. All 

models were trained and tested using the program R (R Core Team). 

 

Several different types of supervised learning approaches exist for the purposes of developing 

outcome prediction models. The most commonly applied include regression models, support-

vector machines, decision trees, and ensemble methods52.  

 

Regularized regression models represent modifications to simple linear and logistic regression 

that regularize and constrain the weights of the model to decrease overfitting52. Regression 

models are relatively simple machine learning techniques to implement and interpret, and have 

been shown to outperform more complex methods in the right setting79,80. However, the 

regression models are often inadequate when there is a large volume of complex and interacting 

variables52. 

 

Support-vector machines are a supervised learning approach that constructs a hyperplane, or 

decision boundary, to separate classes of data52. These are most commonly applied to predict 

binary outcomes.    

 

Decision trees generate several dichotomous questions that are used to split and isolate the 

patients into their respective classes52. An Ensemble method is any machine learning approach 

that combines multiple methods, and random forests represent one of the most common 

examples of this. In random forest machine learning, multiple decision trees are combined into a 
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single “forest.” These forests are capable of producing highly accurate prediction algorithms that 

are relatively easy to interpret. 

 

In addition to random forests, other ensemble methods have been developed and are often 

employed for prediction tasks52. Bagging is a term that refers to an ensemble method based on 

several models that were created in parallel, while boosting denotes an ensemble method that 

refines models sequentially to create a final model.  

 

In each of the three prediction model development studies, four machine learning approaches 

were utilized. In all cases, the models were adapted for censored time-to-event data81. Censoring 

enables the consideration of patients who have not yet reached a given follow-up time, by 

including their event-free time in the model development. The following machine learning 

models were chosen for each study as they represent a variety of different approaches intended 

for this type of data and analysis: 

1. Cox Lasso (Papers I and III)  

The Cox Lasso model applies Lasso (L1) regularization to the Cox proportional hazards 

model, used for time-to-event data82. It selects important predictors by setting less significant 

ones to zero. The extent of this shrinkage is controlled by a tuning parameter, which is 

optimized via cross-validation to balance model simplicity and accuracy. 

2. Lasso Logistic Regression (Paper II) 

The Lasso logistic regression model uses L1 regularization to perform variable selection in a 

logistic regression framework, setting less important predictors to zero82. A tuning parameter, 

optimized via cross-validation, controls the degree of shrinkage to balance simplicity and fit.  

3. Survival Random Forest (Papers I and III) 

The survival random forest uses an ensemble of decision trees for time-to-event data, using 

the log-rank split rule and estimating survival via Kaplan-Meier and Nelson-Aalen 

estimators83. Individual predictions are averaged across all "out-of-bag" bootstrap samples. 

Accuracy is measured by 1-C, where C is Harrell’s concordance index, reflecting prediction 

ranking quality.  
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4. Random Forest (Paper II) 

The random forest model for binary classification is an ensemble of decision trees built from 

bootstrap samples with randomly selected variables at each split83. Predictions are averaged 

across "out-of-bag" samples, and model accuracy is assessed by the overall out-of-bag error 

rate.  

5. Generalized Additive Model (Papers I and II) 

A generalized additive model (GAM) is a flexible regression model that allows for non-linear 

relationships between predictors and outcomes, using smooth terms fit with penalized 

splines84. For time-to-event data, the model uses a Cox proportional hazards framework with 

smooth terms. 

6. Gradient Boosted Regression (Papers I-III) 

Gradient boosted regression (GBM) iteratively fits a series of regression trees to minimize 

prediction error85,86. For time-to-event data, it optimizes the negative log partial likelihood 

under a Cox model. Each iteration updates the model in the direction of the loss function’s 

gradient.  

7. Super Learner (Paper III) 

The Super Learner is an ensemble method that combines multiple machine learning models 

to improve prediction accuracy87. It creates a weighted average of its component models by 

cross-validating each and optimizing the weights to minimize error. In Paper III, the Super 

Learner combined survival random forest and gradient boosted regression models. 

Missing Data 

Missing data can significantly impact clinical prediction modeling, and all three model 

development studies employed methods to deal with missing data. First, models were trained and 

tested using only patients without missing data (complete cases). Then, multiple imputation by 

chained equations (MICE) was applied to assess the impact of excluding patients with 

incomplete data88. This method fills in missing data based on observed patterns and uses this 

expanded dataset to retrain and test the models. Model performance was then compared 

between the complete case and the imputed datasets to evaluate whether imputation improved 

performance. For Paper I, variable distributions were also compared between the complete case 
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and full datasets to evaluate for differences between these patient groups. In Paper II, inverse 

probability weighting was performed to evaluate for differences between those with and without 

two-year follow-up KOOS QoL scores.  

 

Model Performance Evaluation 

There are many different ways to assess the performance of a clinical prediction model, but 

measures of discrimination and calibration represent the most common and important to 

report89,90. Accordingly, the evaluation of model performance was consistent across all three 

prediction model development studies, which reported both discrimination and calibration 

metrics for the test sets. Concordance and the area under the receiver operating characteristic 

curve (AUC) are measures of model discrimination, measuring how well the algorithm ranks 

patients in terms of their risk90,91. Calibration on the other hand is a measure of model accuracy 

(goodness-of-fit), referring to how well the predicted probabilities of subsequent revision surgery 

or inferior patient reported outcome match the actual outcomes observed in the test data90,92. 

 

Discrimination was measured using Harrell’s C-index in Papers I and III, while the AUC was 

reported in Paper II. The C-index is a generalization of the AUC and is particularly suited for 

time-to-event data where some patients have incomplete follow-up81,89,91,93,94. Discrimination 

results range from 0 to 1, with 1 indicating perfect agreement between the predicted risk 

rankings and the true outcomes. In Papers I and III, concordance was calculated at one, two, and 

five-year follow-up periods, while Paper II focused on predicting two-year PROMs. In short, the 

discrimination metric seeks to answer the question: “do patients who experience the outcome 

have higher risk predictions than those who do not?”  

 

For calibration, all three studies used a modified version of the Hosmer-Lemeshow statistic that 

accounts for censored data. This method compares the predicted risk with the actual outcomes, 

grouped into quintiles, and converts the mean squared error of the differences into a chi-squared 

statistic89,92. A larger statistic indicates poorer calibration, and a significant p-value means that the 

model’s predictions are statistically different from the actual outcomes, suggesting mis-

calibration. In a well calibrated model, close to x patients out of 100 with a risk prediction of x% 
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would be expected to experience the outcome. For example, if 100 patients each have a risk 

estimate of 9% for experiencing subsequent revision surgery, the model would be considered 

well calibrated if close to 9 patients truly underwent revision surgery. 

External Validation (Papers IV and V) 

The revision prediction model developed in Paper I was selected for external validation using 

two external datasets. The NKLR-based Cox Lasso revision model was chosen for further 

validation for two main reasons. The first is that it demonstrated similar performance while 

being easier to use, and was therefore more clinically applicable, in comparison with the 

prediction model developed using the combined NKLR and DKRR data in Paper III. The 

second, was that the first external dataset (DKRR) did not contain the outcome variable (two-

year follow-up KOOS QoL score) required to validate the inferior patient reported outcome 

model from Paper II. The DKRR records follow-up KOOS at one, five, and ten years post-

operatively64. The external validity of the NKLR-based prediction model was further assessed 

using the STABILITY I cohort due to the desire to further evaluate its performance on patients 

from outside of Scandinavia. 

 

The goal of these two studies was to evaluate the external validity of the revision prediction 

model and the primary outcome measure was the performance of the model (discrimination and 

calibration) when applied to the two external datasets. This summary will explore the methods 

employed across both external validation studies, with a focus on the patient populations, data 

preparation, missing data, and model performance evaluation. 

Patient Population 

All patients contained within the DKRR and STABILITY I study were included if they had 

known values for the five variables that are required for outcome prediction using the Cox Lasso 

model developed in Paper I.  
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The five variables required for outcome prediction using the Cox Lasso model are: 

• Patient age at primary ACLR  

• Pre-operative KOOS QoL score 

• Graft choice  

• Femur fixation method used for ACLR 

• Time between injury and primary ACLR 

The makeup of the DKRR was previously reviewed, and patients from 2005-2020 were included. 

The STABILITY I RCT was a study evaluating the effect of a lateral extra-articular tenodesis 

(LET) on outcome when added to an ACLR performed using a HT in high-risk patients76. The 

definition of high risk in the STABILITY I study was any patient who met at least two of the 

following criteria: pivot shift grade ≥ 2, desire to return to high-risk or pivoting sports, and/or 

generalized ligamentous laxity. The STABILITY I trial included patients from seven sites in 

Canada and two in Europe (Belgium and United Kingdom). Variable distribution from the 

NKLR patients was compared with that of the DKRR and STABILITY I external validation 

cohorts.  

Data Preparation 

Data from the DKRR and STABILITY I dataset were recoded to match the definitions used for 

the NKLR prediction model. Specifically, femoral fixation devices were defined as either 

“Suspension/cortical fixation device,” “Interference screw,” or “Other,” while graft choice was 

coded as “BPTB,” “HT,” or “Other.”  

 

All patients in the STABILITY I trial received HT for their ACLR with or without the addition 

of a LET. To evaluate whether the addition of a LET altered the patients’ revision risk profile, 

and therefore the accuracy of the prediction model, the graft choice for the STABILITY I 

patients was entered into the revision prediction model in three different ways:  

• All patients coded as HT 

• HT plus LET = BPTB 

• HT plus LET = Other graft choice 
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Missing Data 

Patients with missing data for any of the five variables required for risk prediction were excluded 

from the analysis. Patients with complete data for the five variables were compared to the full 

dataset to evaluate for differences.  

 

Model Performance Evaluation 

The approach to model performance evaluation during external validation was similar to the 

technique used in the original prediction model development studies, including assessment of the 

discrimination and calibration that accounted for censoring. Paper IV mirrored Paper I and 

assessed model discrimination using Harrell’s C-index while calibration was evaluated using the 

Hosmer-Lemeshow statistic. Paper V required a modification to the calibration assessment due 

to the smaller sample size, creating three groups instead of five for the Hosmer-Lemeshow 

calculation. This change ensured sufficient distribution of revisions in each group while retaining 

validity of the method. Concordance was calculated using Harrell’s C-index as per the original 

model development study. Model performance for the STABILITY I cohort was compared 

using all three coding approaches for the graft choice variable listed above, to assess which 

method was most accurate when considering the addition of LET to the ACLR.  

Unsupervised Learning (Paper VI) 

To approach the problem of outcome prediction using a different method, unsupervised 

machine learning was applied to the combined NKLR and DKRR dataset comprised of patients 

included in the two registries from 2004-2020. The purpose was to identify discrete subgroups of 

patients with common characteristics and to compare the rate of subsequent revision ACLR 

between these groups. The goal was to be able to categorize patients into one of the subgroups 

to enable rapid risk estimation in the clinical setting.  

 

Unsupervised learning is a machine learning approach designed to find patterns or groupings in 

data without relying on pre-labeled outcomes. Unlike supervised learning, which predicts a target 

variable, unsupervised methods analyze the relationships among predictor variables to reveal 

inherent structures in the dataset, with no consideration or knowledge of the outcome53.  
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In clinical applications, this typically follows a three-step approach. First, the model creates the 

clusters based on the predictor variables. Second, the clusters are evaluated with respect to their 

defining characteristics. In other words, the clusters are interpreted to determine what factors the 

model used to define each one and therefore, how future patients should be assigned to a 

specific cluster. Finally, the outcome of interest can be assessed in each cluster to determine if 

the risk or event rate varies across clusters.  

 

The dataset used for unsupervised learning was identical to the one used in Paper III. This 

summary will explore the methodological approach applied in Paper VI with a focus on missing 

data, unsupervised learning technique, and model output evaluation.  

Missing Data 

Instead of using imputation to fill in missing values, this study relied on complete-case analysis. 

This decision was based on the previous analyses in Paper III which demonstrated no notable 

difference between the multiply imputed data and the complete case dataset.  

Unsupervised Learning Analysis 

In Paper VI, unsupervised clustering techniques were used to group patients with similar 

characteristics based on the predictor variables contained within the NKLR and DKRR. Three 

clustering algorithms were applied:  

1. K-Means Clustering  

This method groups data points to minimize the variance (sum of squared distances) within 

clusters95,96. The number of clusters (k) must be pre-specified. K-means clustering only 

accommodates continuous predictor variables.   

2. Agglomerative Hierarchical Clustering (AHC) 

Similar to k-means, AHC only considers continuous variables, but unlike k-means, this 

technique builds clusters incrementally97. Each data point starts as its own cluster, and pairs 

of clusters are iteratively merged based on their similarity. The process produces a 

hierarchical structure that represents possible clustering solutions. The optimal number of 
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clusters is then decided by identifying a level of complexity that balances simplicity and 

meaningful subgrouping.  

3. K-Prototypes Clustering 

Designed to handle mixed data types (continuous and categorical variables), k-prototypes 

extends k-means by accommodating both continuous and categorical variables98. It assigns 

patients to clusters by minimizing a weighted distance metric. The weighting parameter 

ensures that categorical variables are appropriately balanced with continuous ones. Similar to 

k-means, the k is pre-determined. 

 

To determine the optimal k, the elbow and silhouette methods were used. The elbow plots the 

within-cluster sum of squares against k95,96. The "elbow point," where additional clusters cease to 

significantly reduce within-cluster variance, indicates the ideal number of clusters (Figure 3). The 

Silhouette method defines the number of clusters that maximizes between cluster dissimilarity 

while minimizing within-cluster dissimilarity95,96. 
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Figure 3: Elbow method to determine the optimal number of clusters based on the combined Norwegian and Danish registry 
data. The circled point is the “elbow” at which further increases in the number of clusters no longer significantly reduces the 
within-cluster variance.   

Model Output Evaluation 

The output of unsupervised learning analysis is often complex and requires careful interpretation 

to determine how the model created the patient clusters. For this study, SHapley Additive 

exPlanations (SHAP) analysis was performed to help explain the defining characteristics of each 

cluster and minimize the “black-box” effect99. The “black-box” refers to the fact that the 

decision pathways, weighting of feature importance, and potential for bias is obscured with some 

complex machine learning methods100,101. This can lead to a lack of interpretability or trust in 

clinical models.  

 

SHAP analysis involves the creation of a classification model aimed at predicting the clusters 

based on the input variables99. This classification model is then used to calculate SHAP values 

for each variable and cluster. SHAP values quantify the influence of each predictor variable on 
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the model’s classification decisions. For example, SHAP values can be used to explain whether a 

specific variable, such as patient age at surgery, played a major or minor role in defining a 

specific cluster. By summarizing variable importance at both the cluster-level and patient-level, 

SHAP analysis can improve transparency, aiding in cluster interpretation and clinical application.  

 

The distribution of variables within each cluster was reviewed by seven orthopaedic sports 

medicine surgeons involved in the study in light of the SHAP analysis. Together, consensus was 

reached on how best to define the clusters clinically and enable future patients to be assigned to 

one of the clusters.  

 

The rate of subsequent revision ACLR was calculated along with Kaplan-Meier survival curves 

for each cluster. A tree diagram was then created to help classify future patients into one of the 

clusters including their respective approximate risk of experiencing subsequent revision ACLR.  
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Results 

Paper I – Norwegian Revision Risk Prediction 

There were 24,935 patients with a primary ACLR and known graft variable from the NKLR that 

were included in the study, of whom 1,219 (4.9%) underwent subsequent revision ACLR. The 

Cox Lasso model identified the most influential predictors for revision surgery as graft choice, 

femur fixation device, pre-surgery KOOS QoL score, time from injury to surgery, and age at 

surgery. Performance of the survival random forest and GBM algorithms dropped substantially 

when they were limited to the five variables selected by the Cox Lasso model which necessitated 

inclusion of all variables for these models. Imputation of missing data did not significantly 

improve the performance of any of the models. Therefore, the models were trained and tested 

using only patients with complete data for the required variables. This amounted to 18,887 

patients (975 revisions; 5.2%) for the Cox Lasso and GAM, and 13,272 patients (619 revisions; 

4.7%) for the survival random forest and GBM models.  

 

The concordance ranged from 0.67-0.69 for all four machine learning models that were 

evaluated, and all were generally well-calibrated. Concordance was best for the Cox Lasso and 

GAM algorithms overall (0.68-0.69). Calibration was weakest when predicting two-year revision 

risk for all models. There was modest evidence of mis-calibration, defined as a calibration p-

value 0.01-0.05, when predicting two-year revision risk for all but the GBM (Table 2 and Figure 

4). 
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Table 2: Model Performance Measures – Norwegian Revision Risk Analysis 

Revision 
Probability Model Concordance 

 

Calibration 
statistic 

Calibration 
p-value 

1 year 

Cox Lasso 0.686 4.89 0.18 

Survival Random forest 0.672 3.12 0.374 

Generalized additive model 0.687 4.79 0.188 

Gradient boosted regression 0.669 4.98 0.174 

2 years 

Cox Lasso 0.684 11.35 0.01 

Survival Random forest 0.670 11.66 0.009 

Generalized additive model 0.685 11.19 0.011 

Gradient boosted regression 0.666 3.76 0.288 

5 years 

Cox Lasso 0.683 6.19 0.103 

Survival Random forest 0.670 3.71 0.295 

Generalized additive model 0.684 6.98 0.073 

Gradient boosted regression 0.665 0.38 0.944 
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Figure 4: Calibration plots for the revision prediction models at each time point.  

CL: cox lasso; RF: survival random forest; GAM: generalized additive model; GBM: gradient boosted regression. 
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Since the Cox Lasso model demonstrated similar performance and superior ease of use when 

compared with the other models, it was selected to create a user-friendly online calculator for 

predicting patient-specific risk of ACL revision 

(https://swastvedt.shinyapps.io/calculator_rev/). While the registry-wide revision risk was 4.9%, 

the calculator enables clinicians to estimate individualized risks, ranging from near 0% for low-

risk patients to up to 20% at five years for high-risk individuals (Figure 5).  

 

 
Figure 5: QR Code for revision risk calculator 

 

Paper II – Norwegian Inferior Patient Reported Outcome Risk 

Prediction 

Of the nearly 25,000 patients in the NKLR, there were 11,630 patients that met the inclusion 

criteria and had complete two-year follow-up data for the KOOS QoL score. A total of 4,122 

patients were excluded due to an unknown graft variable, concomitant non-ACL injury, or 

follow-up time of less than two years. Of the 20,818 patients that remained, 9,188 were excluded 

due to missing two-year post-operative KOOS QoL variables. The primary outcome measure of 

inferior patient reported outcome was reported as subjective failure, which was defined as a 

KOOS QoL score below 44. This endpoint occurred in 2,556 (22%) patients. Inverse-probability 

weighting and imputation of missing data demonstrated similar findings between the complete 

case and full datasets.  
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Key predictors of inferior outcome identified by the lasso logistic regression model included:  

• Pre-operative KOOS scores below the median on all subscales  

• Presence of a cartilage injury  

• Activity leading to the injury 

• Previous surgery to the ipsilateral knee,  

• Pre-operative KOOS Sports score 

• Pre-operative KOOS QoL score 

• BMI 

• Age at injury  

The random forest model identified additional variables such as age at surgery, graft choice, time 

between injury and surgery, and fixation devices. The GAM and GBM ranked features similarly 

to the other models. 

 

All models except the random forest achieved AUC between 0.67 and 0.68. The GAM and 

GBM performed best with an AUC of 0.68. All models except the random forest were well-

calibrated (Table 3). Although the GBM demonstrated similar prediction performance to the 

GAM, it required more variables for outcome prediction Therefore, the GAM algorithm was 

selected to create an online calculator for predicting patient-specific risks of inferior patient 

reported outcome (KOOS QoL <44) two years post-surgery 

(https://swastvedt.shinyapps.io/calculator_koosqol/). While the overall risk of KOOS QoL 

<44 in the registry was 22%, the calculator allows clinicians to provide personalized risk 

estimates for individual patients (Figure 6). 
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Table 3: Model Performance Measures – Norwegian Inferior Patient Reported Outcome Analysis 

Model AUC AUC 

Confidence 

Calibration 

statistic 

Calibration 

p-value 

Logistic Regression 

(Lasso) 
0.67 (0.64, 0.71) 4.57 0.206 

Random forest 0.65 (0.62, 0.69) 26.83 < 0.001 

Generalized additive 

model 
0.68 (0.64, 0.71) 4.03 0.258 

Gradient boosted 

regression 
0.68 (0.64, 0.71) 4.74 0.192 

 

 

 

 
Figure 6: QR Code for inferior patient reported outcome risk calculator 
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Paper III – Combined Norwegian and Danish Revision Risk Prediction 

The combined NKLR and DKRR produced a dataset comprised of 62,955 patients, of whom 

3,205 (5%) underwent subsequent revision ACLR. Imputation of missing data yielded nearly 

identical results to those from complete case analyses, with similar concordance confidence 

intervals and observed calibration ratios.  

 

Key predictors of revision surgery identified by the top-performing models (survival random 

forest, GBM, and Super Learner) included patient age at injury and surgery, the time between 

injury and surgery, graft choice, and pre-operative KOOS QoL and Sports scores.  

 

All models except the Cox lasso produced concordance of 0.67 at all follow-up times in the 

complete case analysis. The Cox lasso model had lower concordance (0.58) and demonstrated 

moderate evidence of mis-calibration (p-values 0.01-0.05) at two-year and five-year follow-ups. 

The nonparametric models generally demonstrated better calibration, though some mis-

calibration was observed for the Super Learner at one year and five years, and for the random 

survival forest and GBM at five years (Table 4).  
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Table 4: Model Performance Measures – Combined Registry Revision Risk Analysis 

Revision 

Probability 
Model Concordance 

Concordance 

95% CI 

Calibration 

statistic 

Calibration 

p-value 

1 year 

Cox model 
(lasso) 0.59 (0.56, 0.61) 7.19 0.066 

Random 
survival forest 0.67 (0.64, 0.69) 5.54 0.136 

Gradient 
boosted 
regression 

0.67 (0.65, 0.70) 7.48 0.058 

Super Learner 0.67 (0.65, 0.69) 8.67 0.034 

2 years 

Cox model 
(lasso) 0.58 (0.56, 0.61) 8.17 0.043 

Random 
survival forest 0.67 (0.64, 0.69) 6.42 0.093 

Gradient 
boosted 
regression 

0.67 (0.64, 0.69) 4.53 0.210 

Super Learner 0.67 (0.64, 0.69) 4.10 0.250 

5 years 

Cox model 
(lasso) 0.58 (0.56, 0.61) 11.37 0.010 

Random 
survival forest 0.67 (0.65, 0.69) 9.27 0.026 

Gradient 
boosted 
regression 

0.67 (0.64, 0.69) 11.07 0.011 

Super Learner 0.67 (0.64, 0.69) 11.82 0.008 

Paper IV – External Validation Using the Danish Registry 

A total of 10,922 patients from the DKRR had all five variables required for revision risk 

prediction using the Cox Lasso model developed using the NKLR (Paper I). There were some 

notable differences in the patient populations between the two cohorts. In comparison to the 
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NKLR patients from Paper I, the DKRR patients had higher rates of HT use (81% versus 59%) 

and suspension/cortical femur fixation (72% versus 53%), with lower rates of concomitant 

meniscus (42% versus 53%) and chondral (14% versus 23%) injuries. Additionally, the revision 

rate was slightly higher in the Danish (6.9%) cohort compared to the Norwegian (5.2%) cohort. 

Patients with complete data in the DKRR group were broadly similar to those DKRR patients 

without complete data, particularly regarding the five variables required for the model.  

 

The NKLR Cox Lasso model demonstrated discrimination (concordance) of 0.68 when applied 

to the DKRR cohort which was similar to the original NKLR internal validation concordance 

(0.68–0.69). However, calibration was less accurate for the DKRR population at one year and 

five years while being similar for the two-year predictions (Table 5). 

 

Table 5: Comparison of model performance of the revision risk algorithm between the original Norwegian internal validation 
and the Danish external validation cohorts. 

Revision 

Probability  
Model Concordance 

Calibration 

statistic 

Calibration p-

value 

1 year 
Original Norwegian 0.69 4.89 0.18 

Danish Registry 0.68 22.24 <0.001 

2 years 
Original Norwegian 0.68 11.35 0.01 

Danish Registry 0.68 11.82 0.008 

5 years 
Original Norwegian 0.68 6.19 0.103 

Danish Registry 0.68 13.98 0.003 

Paper V – External Validation Using the STABILITY I Patients 

A total of 591 patients from the STABILITY I RCT had all five variables required for revision 

risk prediction using the Cox Lasso model developed using the NKLR (Paper I). There were 

some notable differences in the patient populations between the two cohorts. Compared to the 
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NKLR cohort, the STABILITY I patients were younger with a narrower age range (14–25 years 

versus mean age 28), had shorter and more consistent time from injury to surgery, and uniformly 

received HT with suspensory femoral fixation. 

 

The Cox Lasso revision prediction model performed best when patients in the STABILITY I 

cohort who received HT plus LET were coded as having undergone ACLR with BPTB. 

Concordance values for both one-year and two-year revision predictions were 0.71 which was 

higher than the concordance observed during model development in Paper I. However, the 95% 

confidence interval of the concordance among the STABILITY I patients was wider (0.63–0.79). 

The model was well-calibrated for one-year predictions but demonstrated mis-calibration 

regarding the two-year predictions, similar to the performance observed with the Norwegian 

patients in Paper I (Table 6).  
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Table 6: Comparison of model performance of the revision risk algorithm between the original Norwegian internal validation 
and the STABILITY I RCT external validation cohorts with patients randomized to hamstring tendon autograft plus 
lateral extra-articular tenodesis coded three different ways. 

Revision 
Probability  Model 

Concordance 

(95% CI) 
Calibration 

statistic 
Calibration 

p-value 

1 year 

Original Norwegian 
Algorithm  

0.686 

(0.652-0.721) 
4.9 n.s. 

STABILITY data 

(HT + LET = BPTB) 

0.713 

(0.634-0.791) 
2.6 n.s. 

STABILITY data 

(HT + LET = Other) 

0.609 

(0.528-0.691) 
10.6 <0.01* 

STABILITY data 

(All patients = HT) 

0.674 

(0.597-07.51) 
8.7 <0.01* 

2 years 

Original Norwegian 
Algorithm  

0.684 

(0.650-0.718) 
11.3 0.01* 

STABILITY data 

(HT + LET = BPTB) 

0.713 

(0.637-0.789) 
11.7 <0.01* 

STABILITY data 

(HT + LET = Other) 

0.608 

(0.530-0.688) 
8.9 <0.01* 

STABILITY data 

(All patients = HT) 

0.673 

(0.598-0.747) 
10.2 <0.01* 

*Statistical significance, p = <0.05 
CI: confidence interval; HT: hamstring tendon autograft; LET: lateral extra-articular tenodesis; BPTB: bone-
patellar tendon-bone autograft; n.s.: not statistically significant 
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Paper VI – Combined Norwegian and Danish Unsupervised Machine 

Learning Analysis 

Only patients with complete data were considered for unsupervised machine learning analysis, 

which resulted in a combined NKLR and DKRR database that included 28,631 patients. Of 

these, 1,770 (6.2%) patients underwent subsequent revision ACLR.  

 

The optimal number of clusters was determined to be five. K-prototypes clustering was utilized 

to generate the five clusters due to the ability to consider both continuous and categorical 

variables in the analysis. SHAP analysis aided the surgeons’ interpretation of the five clusters 

(Figure 7). Kaplan-Meier survival curves were created and demonstrated unique revision surgery 

rates among the five clusters (Figure 8). The surgeons’ simplified interpretation of the 

unsupervised machine learning output was used to generate a tree diagram that enables 

approximate patient classification into one of the five clusters including the corresponding 

revision surgery rate (Figure 9). 

 

 

Figure 7: Mean absolute SHapley Additive exPlanations (SHAP) values by variable for each cluster. Colours represent the 
contributions of the variables assigned to each cluster.  

BPTB: bone–patellar tendon–bone autograft; comb: combined; fix.: fixation; ICRS: International Cartilage Regeneration 
& Joint Preservation Society; KOOS: Knee injury and Osteoarthritis Outcome Score; QOL: Quality of Life subscale; 
QT/BQT: quadriceps tendon autograft (with or without bone); Sports: Sport and Recreation subscale.   
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Figure 8: Kaplan-Meier survival curve for all 5 clusters. 

 

 

 

 

Figure 9: Tree diagram for approximate patient classification by cluster. 

BPTB: bone–patellar tendon–bone autograft; KOOS: Knee injury and Osteoarthritis Outcome Score (Sports 
subscale); QT: quadriceps tendon autograft (with or without bone). 
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Discussion 

The most important findings from this thesis can be summarized as follows: 

a) machine learning analysis of the NKLR and DKRR enabled the development and 

validation of prediction models that demonstrated moderate accuracy for predicting 

revision surgery and inferior outcome following ACLR, and identified the most 

important factors used to predict these outcomes 

b) a rigorous approach to clinical prediction modeling has been described, laying the 

foundation for future innovation  

c) more work is needed to evaluate the performance of the prediction models on patients 

from outside Scandinavia and to determine the threshold for clinical relevance regarding 

ACLR outcome prediction  

d) the development and validation of clinical prediction tools may be limited by both the 

quality and quantity of the available data and national knee ligament registries may 

benefit from expanded variable collection including additional factors that have been 

associated with outcome, such as pre-operative laxity, posterior tibial slope, and 

rehabilitation details.  

As the body of literature related to clinical outcome predictions powered by artificial intelligence 

grows exponentially, it is anticipated that more models will be developed and refined with the 

intention of more accurate outcome predictions and hopefully, improved patient outcome. What 

follows is a more expansive analysis of the six studies, including how they fit together within the 

broader context of ACL outcome prediction. A discussion of the clinical relevance of this thesis 

will then be presented.   

Prediction Model Development (Papers I-III) 

Main Findings 

Collectively, these three studies represent the first time that large ACL databases have been 

explored using supervised machine learning. The two main takeaways are: 
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1) Analysis of the NKLR enabled the development of online prediction calculators that 

could be used in the clinic to estimate a patient’s risk of subsequent revision (Figure 10) 

or an inferior KOOS QoL score after primary ACLR (Figure 11). 

 

2) Overall model performance was moderate and increasing the sample size from ~25,000 

patients in the NKLR to ~63,000 patients in the combined NKLR/DKRR dataset did 

not improve the accuracy of the revision prediction algorithm, suggesting a need for the 

registries to increase variable collection to include more variables associated with ACLR 

outcome. 

Several aspects of these studies necessitate further discussion including the performance of the 

prediction models, chosen end-points, factors associated with outcome, and a review of similar 

prediction models that have recently been developed. 

 

 

Figure 10: Example output of the online revision risk calculator. The patient is 20 years old with a pre-operative KOOS 
QoL score of 50 undergoing an ACL reconstruction with hamstring tendon autograft and suspension fixation on the femur 
four months after ACL injury. Patient-specific risk estimates are shown on the right, along with the median level of risk 
with 25th to 75th percentiles based on the Norwegian Knee Ligament Register patient population.  

KOOS: Knee Injury and Osteoarthritis Outcome Score; QoL: Quality of Life subscale; ACL: anterior cruciate ligament 
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Figure 11: Example output of the online calculator to predict two-year post-operative KOOS QoL score less than 44 after 
ACL reconstruction. The patient is 20 years old, with a BMI of 23, and pre-operative KOOS score of 50 on all subscales. 
There is no history of previous ipsilateral knee surgery, no concomitant cartilage injury, and the injury occurred during a 
pivoting activity. Patient-specific risk estimate is shown on the right, along with the median level of risk with 25th to 75th 
percentiles based on the Norwegian Knee Ligament Register patient population.  

KOOS: Knee Injury and Osteoarthritis Outcome Score; QoL: Quality of Life subscale; ACL: anterior cruciate ligament; 
BMI: Body Mass Index 

Model Performance 

Model performance of all three studies was similar, producing discrimination values between 

0.67-0.69 and a range of calibration values suggesting some well-calibrated models along with 

modest evidence of mis-calibration at certain time points. How to interpret these results and 

appropriately put the observed performance into context represents an important concept to 

review.  

 

Regarding calibration, which measures how accurately the risk predictions reflect the agreement 

between the estimated and observed event rate, the models developed in Papers I-III were 

generally well-calibrated. The Hosmer-Lemeshow test produces a calibration p-value, and values 

above 0.05 are considered well-calibrated93. However, the two-year revision risk predictions 

demonstrated p-values below 0.05, suggesting statistical difference between the predicted and 

observed outcomes at this time point.  There are several reasons why a model may demonstrate 

mis-calibration, such as a change in variables or techniques over time102. This outcome variability 

may lead to more difficulty achieving adequate calibration over the long-term.  
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Large sample sizes can also affect the assessment of calibration, as small discrepancies may 

produce significant p-values. In the case of the revision prediction model developed using the 

NKLR patients, Figure 4 demonstrates how the deviation between predicted and observed 

revisions were within ~1% for the cox lasso model. Due to the large sample size, this resulted in 

significant p-values for the two-year predictions. As is the case when interpreting any p-value, 

one must consider not only statistical significance, but also clinical significance. With an average 

prediction deviation of ~1%, the predictions would be considered well-calibrated from a clinical 

perspective.  

 

Discrimination, often quantified by concordance or AUC, assesses how well a model can rank 

individuals according to their likelihood of experiencing the outcome of interest. The two 

measures are similar, with some subtle differences. Survival analysis, such as the likelihood that a 

patient will undergo a revision surgery at some point in the future is typically evaluated using 

concordance, while AUC is used to predict risk for classification tasks, like inferior patient 

reported outcome at two years post-operatively89,93,103.  

 

Concordance is calculated as the proportion of all possible pairs of patients (one who 

experiences the outcome and one who does not) where the model assigns a higher risk score to 

the patient who experiences the outcome93. In the context of the Cox Lasso model for predicting 

revision ACLR, a concordance of 0.68-0.69 means that in approximately 68-69% of patient pairs, 

the model correctly ranks the patient who underwent revision surgery as having a higher risk 

than the one who did not.  

 

In contrast, AUC is calculated as the probability that a randomly chosen patient who experienced 

the outcome will have a higher predicted risk score than a randomly chosen patient who did 

not89,93. For the GAM algorithm for predicting inferior KOOS QoL two years post-operatively, 

an AUC of 0.68 means that 68% of the time, the model correctly assigns a higher risk score to a 

patient who had a KOOS QoL <44 compared to a patient who did not. 
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Concordance and AUC values range from 0.5 to 1.0 and can be interpreted similarly to one 

another89,93,103. A value of 0.5 indicates no discriminative ability, meaning the model is no better 

than random chance in ranking patients. In contrast, a value of 1.0 represents perfect 

discrimination, where the model ranks all patients correctly. When interpreting the performance 

of a clinical prediction model, one must consider what constitutes an acceptable level of 

discriminative accuracy.   

 

Traditional teaching would suggest that model discrimination values >0.9 should be considered 

excellent, while >0.8 is good, >0.7 is fair, and models with values <0.7 are poor104–106. However, 

this convention does not always hold when applied to clinical prediction models, which may be 

limited by an imperfect outcome measure or the influence of random chance, and most clinically 

useful algorithms have values that fall in the 0.7-0.9 range107–109. In some cases, values below 0.7 

are also relevant, such as when model performance has been demonstrated to be superior to 

human performance at the same task89,107. Further, values greater than 0.9 are often biased by 

model overfitting or mismanagement of the data110. For these reasons, combined with the fact 

that discrimination represents only one aspect of model performance, it has been advocated that 

discrimination values should be taken in context and presented without labels such as “excellent” 

or “good.103,111” 

 

For Papers I-III, a concordance of 0.68-0.69 was observed. While this level of concordance is 

acceptable in many clinical prediction models, it also indicates room for improvement, as ideal 

models would achieve a concordance closer to 0.8 or higher, reflecting stronger discrimination. 

In reality, it is unlikely that a revision surgery or PROM-based prediction model for ACL 

patients would ever achieve discrimination close to 1.0 for two main reasons. First, the selected 

outcomes and measurement technique are flawed – not all patients who fail will go on to have 

revision surgery or low PROMs, and some patients may have experienced the outcome but were 

lost to follow-up in the registry. Secondly, random chance, such as a subsequent injury from a 

motor vehicle collision, may lead to revision surgery or inferior PROMs but cannot be accounted 

for in the prediction models. The observed values imply the ACL prediction models may be 

useful in identifying patients at higher risk of revision surgery and inferior KOOS QoL, but 

further work is needed to clarify the clinical utility, a topic that will be addressed later.  
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Outcome Measures 

The choice of outcome measure for a prediction model can impact the performance and clinical 

utility of the model. As alluded to previously, outcome measures such as revision surgery or 

inferior KOOS QoL score are prone to measurement error and may not completely reflect the 

desired outcome. Ultimately, the goal of the prediction models was to identify patients at an 

increased risk of a failure of ACLR, which is a challenging outcome to isolate. Failure of ACLR 

has been defined as graft rupture, persistent laxity, revision surgery, failure to return to sport, and 

several other criteria based on various PROMs19,112.  

 

The primary focus of this thesis was on the prediction of subsequent revision as surrogate for 

clinical failure of primary ACLR. As mentioned, this endpoint is imperfect since some patients 

may have a failure but not undergo revision surgery, while other patients may have a revision 

surgery that is not accurately captured in the database113,114. Despite these limitations, revision 

surgery represents the most objective indicator of a failed ACLR and is reliably captured in the 

NKLR and DKRR64,70.  

 

To account for the fact that some patients may experience ACLR failure but not undergo a 

subsequent revision surgery, Paper II sought to estimate the risk of an inferior patient reported 

outcome two years after surgery. The definition of an inferior outcome, which was termed 

“subjective failure” in Paper II, was a KOOS QoL score <44. This distinction was made based 

on two previous studies. The first, was a RCT that compared rehabilitation and early ACLR with 

rehabilitation and the option of a delayed ACLR if needed78. In that study, the authors defined an 

arbitrary cutoff value of 44 on the KOOS QoL based on the premise that it was “consistent with 

a report of more than moderately decreased knee-related quality of life.78” The second study was 

based on the NKLR and found a substantially higher rate of eventual revision ACLR among 

patients with two-year post-operative KOOS QoL scores below this threshold73. Since the 

publication of those papers, many other studies have adopted that threshold as a marker of a 

poor outcome or failure after knee surgery115–119.  

 

Despite the relatively common practice of using a cutoff value of 44 on the KOOS QoL to 

denote a failure, there are some problems with this that should be discussed. First, the custom of 
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labelling patients who fall below this threshold as having a “subjective failure” is a misnomer, as 

this finding more accurately represents an inferior patient reported outcome on one of the five 

KOOS subscales. A more global assessment of failure would be needed to accurately classify a 

patient as having failed, and subjectivity should be avoided.  

 

The second issue with the KOOS QoL <44 threshold as a prediction target is that it may not be 

the most clinically relevant outcome. The overall validity of the KOOS regarding the assessment 

of young patients after ACLR has been disputed in the recent literature19,120–122. More recently, 

the patient acceptable symptom state (PASS) has been identified as a useful marker of patient 

satisfaction after ACLR14,123–127. The PASS threshold can be determined statistically or via an 

anchor question and seeks to dichotomize patients into two groups: those who are satisfied with 

their outcome and those who are not123. An example of an anchor question designed to 

determine whether or not a patient has achieved PASS is: “Taking into account all the activities 

you have during your daily life, your level of pain, and also your functional impairment, do you 

consider that your current state is satisfactory?128,129” The PASS threshold for the KOOS after 

ACLR has been defined and this outcome measure is gaining popularity14,124–127. Future 

prediction models may offer more clinical relevance if they seek to predict PASS after ACLR. 

Factors Associated with Outcome 

Multiple factors have been identified that place a patient at an increased risk of failure following 

ACLR11,20–24,28–31,33–37,45,130. Through a process known as feature selection, whereby the machine 

learning model sequentially excludes variables from the dataset that do not impact the prediction 

accuracy, the number of variables required for outcome prediction can be narrowed. In the 

NKLR prediction models, only five variables were required for revision prediction and eight 

were required for prediction of inferior patient reported outcome.  

 

All five variables that were required for the estimation of revision risk have previously been 

associated with ACLR failure. It was also interesting to note that prediction of revision relied on 

some variables that are modifiable (time between injury and surgery, graft choice, and femoral 

fixation device) while the inferior patient reported outcome prediction model variables were 

non-modifiable by the surgeon. In fact, the two most important variables identified by the GAM 
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to predict a low post-operative KOOS QoL score were the patient’s pre-operative KOOS 

scores. This finding is consistent with other studies that have identified pre-operative PROMs as 

strong predictors of post-operative PROMs131. 

 

A general premise fundamental to machine learning is that model performance is only as good as 

the data available. Both data quality and quantity are required to develop strong and clinically 

useful models. An advantage to using national registry data is that there is sufficient data 

quantity, especially when registry data is pooled. However, the observed discrimination of 0.67-

0.69 combined with the fact that the performance of the revision risk prediction model did not 

improve when the NKLR and DKRR were merged, suggests inherent problems with data quality 

relative to the complexity of the outcome.  

 

This weakness of the national knee ligament registries that limits the predictive capacity largely 

relates to the variables that are collected. Although the registries collect multiple variables and 

have been able to identify several factors associated with outcome since their inception, they fail 

to capture some important variables that would likely aid in outcome prediction due to their 

apparent association with graft failure. These include radiographic measures like alignment37,132–

136, physical examination findings such as degree of knee laxity21,45, rehabilitation 

information26,27,137, or surgical technique details such as tunnel position138,139. For the national 

knee ligament registries to produce prediction models with improved accuracy, they must evolve 

to capture more of these clinically relevant outcomes. This is no easy feat however, as the 

addition of new variables to the registries increases burden on the surgeons who are responsible 

for data collection in the current workflow. The result is potential survey fatigue and decreased 

compliance, which would negatively impact both data quality and quantity65. Potential ways to 

leverage artificial intelligence to overcome these obstacles will be presented in the Future 

Opportunities and Next Steps section of this thesis. 

Other ACLR Outcome Prediction Models 

As of December 2024, five other ACL revision prediction models have been published. In 2020, 

the MOON group published an algorithm for predicting graft rupture following ACLR based on 

multivariable regression modeling of 770 patients followed for six years after surgery140. This 

study led to the development of an online calculator for risk prediction (https://acltear.info/acl-
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reinjury-risk/acl-autograft-retear-risk/) and underwent subsequent external validation using 618 

patients from the STABILITY I RCT141. The discrimination of the model was 0.67 during 

development, and the authors report an improved discrimination of 0.73 during model external 

validation. However, the sample sizes were small in both the development and validation 

cohorts, and the discrimination confidence interval was wide, suggesting the true discriminative 

ability remains uncertain. Additionally, the model was limited to patients between the ages of 14-

22 and only included BPTB or HT graft choices. Factors used to predict graft rupture using this 

model include patient age, height, weight, sex, sport, and activity level.  

 

Four other ACLR outcome prediction models have been developed using machine learning 

techniques and demonstrate impressive model performance. Usami et al. developed a model to 

predict ipsilateral ACL graft rupture that only requires two factors: age at surgery and graft 

type142. The corresponding AUC was 0.81. Ye et al. published their machine learning approach to 

predict multiple ACLR outcomes including graft failure and reported an AUC of 0.94143. The 

most influential predictors of graft failure were found to be medial meniscus resection, 

participation in competitive sports, and high posterior tibial slope. Zhang et al. applied an 

ensemble model to the same cohort as the previous study by Ye et al.143 to predict clinical ACLR 

failure (defined as graft rupture or rotational laxity) and reported an AUC of 0.91144. Eight 

variables were required for outcome prediction in this study: follow-up period, knee laxity grade, 

time from injury to surgery, participation in competitive sports, posterior tibial slope, graft 

diameter, age at surgery, and medial meniscus resection. Finally, Kunze et al. developed machine 

learning models to predict the achievement of minimal clinically important difference (MCID) 

on the International Knee Documentation Committee (IKDC) score at a minimum two years 

post-operatively145. The authors report a discrimination value of 0.82 and the top five most 

predictive features were BMI, MCL laxity grade, femoral fixation, history of contralateral knee 

surgery, and pre-operatively knee range of motion.      

 

Although all four of these machine learning models demonstrate superior discriminative ability 

compared with the MOON140 and national registry-based algorithms of this thesis, none have 

been externally validated and the sample sizes were 386 (Usami et al.)142, 432 (Ye et al. and Zhang 

et al.)143,144, and 442 (Kune et al)145. The problem with prediction algorithms produced from small 



Discussion 

 

59 

 

 

populations like these are that they are prone to overfitting. Model overfitting occurs when an 

algorithm learns patterns specific to the training data that do not generalize to new, unseen 

data146. This can result in excellent performance on the test set but poor accuracy or reliability on 

new data. This reinforces the concept that data quality and quantity are both crucial components 

of model performance and clinical utility. 

External Validation (Papers IV and V) 

Main Findings 

The most important findings from the two external validation studies are that the NKLR 

revision prediction model demonstrated similar performance when applied to the different 

patient populations, though there were limitations of each study. This discussion will review the 

performance of the model during external validation, the finding that LET may influence how 

graft choice should be entered into the risk calculator, and the importance of external validation 

prior to clinical application of machine learning models.  

Model Performance 

 

Paper IV demonstrated that when the NKLR revision prediction model was applied to patients 

from the DKRR, it maintained its discriminative ability with a concordance similar to that 

observed in the original dataset. This suggests that the algorithm’s capacity to rank patients 

according to their risk of revision surgery generalizes across populations with differing surgical 

trends and injury characteristics. However, calibration was worse at one year and five years and 

similar at two years, leading to a model that was mis-calibrated overall for the DKRR patients.  

This observation was likely due to the large sample size and the variation in injury and surgical 

trends between the two populations, since the proportion of patients with HT ACLR and 

suspension/cortical femoral fixation was much higher in the DKRR cohort. This highlights the 

influence of population-specific factors on model performance and the need to account for these 

when applying prediction models to populations with different variable distributions.  
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Paper V further assessed the NKLR model’s performance in a different context: a randomized 

trial with a narrowly defined patient population. While concordance values were similar to those 

in the NKLR and DKRR datasets when the patients who underwent ACLR with HT plus LET 

were coded as BPTB, the wide confidence intervals indicate uncertainty about the model’s true 

performance for this group. This highlights the importance of adequate data quantity when 

evaluating model performance – a requirement that applies to not only the model development 

phase but also to external validation. The NKLR model was well calibrated for predicting one-

year outcomes but less reliable at predicting risk at two years, consistent with the original NKLR 

model performance and reflective of the inherent challenges in longer-term prediction due to 

increased variability. 

The Effect of Lateral Extra-Articular Tenodesis  

The other important outcome from Paper V is the fact that patients who had a LET with their 

HT ACLR behaved more like those receiving BPTB in terms of revision risk, a conclusion 

consistent with prior literature based on the MOON revision prediction calculator141. The LET is 

an adjunctive procedure to control the anterolateral instability that often accompanies ACL 

injury and the addition of a LET to ACLR is gaining in popularity as the role of the peripheral 

stabilizers in post-operative stability becomes more clearly understood76,147–150.  

 

The logic underlying the decision to evaluate the effect of coding a HT plus LET as a graft 

choice other than HT in the revision risk model was based on two underlying assumptions. The 

first, was that failure rates are reportedly lower when a LET is performed concomitantly with a 

HT ACLR76. The second, is that in the Scandinavian ACL registries, HT ACLR have a higher 

revision rate than BPTB ACLR28,31. It therefore followed that the addition of a LET for patients 

having a HT ACLR would potentially result in revision surgery rates that more closely 

approximated those of a patient who received a BPTB.  

 

The influence of LET on revision risk was not fully appreciated during the original model 

development using the NKLR owing to the low occurrence of this variable which was only 

added to in the registry in 2018. As the indications for LET evolve, it is anticipated that future 

analysis using the Scandinavian registries, both through conventional and novel statistical 
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approaches, will enable further evaluation of the impact this procedure has on patient outcomes 

and clarify the importance of this variable on risk prediction.  

The Importance of External Validation 

The external validation of machine learning models is essential to fully understand their clinical 

relevance and applicability to patient populations that differ from the one used to train and 

internally validate the algorithm. However, despite the TRIPOD Statement’s strong 

recommendation that external validation be performed prior to clinical deployment of prediction 

models, this crucial step is infrequently performed in orthopaedic research77,151. Overall, the lack 

of external validation is a major barrier to widespread adoption of published models – and 

rightly so. Clinicians must understand that available models may not perform as accurately for 

their patients as suggested by the developers and should therefore take caution when considering 

implementation. 

 

One of the advantages of using national registry data to develop and validate clinical prediction 

algorithms is the fact that the results may be generalizable to a wide swathe of the population 

based on the diverse array of patients and surgeons supplying data. This is in contrast to smaller, 

more focused studies of individual surgeon, institution, or regional databases. This emphasizes 

somewhat of a catch-22 however, whereby models created for a more general population may 

not perform or apply as well to individual niche practices and vice versa. It is therefore important 

to consider these differences between the data used to develop the models and the intended 

population, and whenever possible, establish the external validity on populations that closely 

resemble the target population that will use the models.      

Barriers to External Validation 

The external validation of clinical prediction models can pose several challenges for clinician 

scientists. First, a large volume of data is required for adequate model validation, as 

demonstrated by the wide confidence interval observed in Paper V, and it can be difficult to find 

a suitably large database containing all of the required predictor variables. Ideally, the validation 

patient population should be different enough to represent a new cohort, while being similar to 

the development population with respect to the nature of data collection and outcome tracking. 

As prospective and retrospective data collection becomes easier and more integrated into health 
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care records, this may become less of an issue. Another barrier to external validation is the 

potential for regulations limiting data transfer between countries or health regions due to local 

legislation and privacy concerns. The sharing of machine learning algorithms rather than patient 

data represents one strategy to overcome these challenges and requires collaborative efforts and 

trust between study groups.  

Unsupervised Learning Analysis (Paper VI) 

Main Findings 

The most significant finding of this novel exploration of the combined NKLR and DKRR 

dataset is the generation of five distinct groups of patients that each had unique revision rates 

following primary ACLR. The clusters could be grouped according to revision rate, with Cluster 

1 patients considered to be high-risk (9.9%), Cluster 2 patients to be moderate risk (6.9%), and 

patients in Clusters 3-5 considered low risk (3.1-4.7%). Aided by a SHAP analysis to overcome 

the black-box effect of the unsupervised learning method, the distinguishing characteristics of 

each cluster were defined, potentially enabling the assignment of future patients undergoing 

ACLR into one of the five clusters based on age, graft choice, and pre-operative KOOS Sports 

subscale score. The result was a tree diagram that would facilitate rapid risk stratification in the 

clinical setting should the model demonstrate acceptable classification performance during 

external validation (Figure 9). The distinguishing characteristics of each cluster were: 

• Cluster 1: young patient with HT autograft and low baseline KOOS Sports score 

• Cluster 2: patient with HT autograft and high baseline KOOS Sports score 

• Cluster 3: patient with BPTB or QT autograft and high baseline KOOS Sports score 

• Cluster 4: patient with BPTB or QT autograft and low baseline KOOS Sports score 

• Cluster 5: older patient with HT autograft and low baseline KOOS Sports score 

The Challenge with Cluster Interpretation – The Black-Box Effect 

This unsupervised approach to risk stratification highlights the potential of machine learning 

techniques to discover complex, previously unrecognized interactions between patient, surgical, 

and outcome-related variables in a dataset, but also presents some unique challenges. One such 



Discussion 

 

63 

 

 

challenge that may plague machine learning models, particularly unsupervised learning, is the 

"black-box" nature of the algorithm. The opaque decision-making process of machine learning 

models can obscure the understanding of how clusters are derived or what specific variable 

interactions contribute to the final output. Despite the advent of techniques like SHAP analysis 

which can enhance explainability, the underlying complexity of the machine learning algorithm 

still limits transparency. 

 

The black-box effect may hinder clinical adoption by creating uncertainty among clinicians 

regarding the reliability of the model’s predictions. For example, features such as graft choice, 

age, and pre-operative KOOS formed the basis of the clustering in Paper VI, but it remains 

unclear how subtle, multidimensional interactions between these variables were weighted. This 

lack of clarity may raise concerns about whether the model might miss or misinterpret critical 

factors not explicitly included in the clustering if used prospectively.  

 

An additional concern relates to over-simplification of the clustering for clinical use. This 

simplification, while necessary for clinician interpretability and rapid risk stratification, can 

impact the accuracy of patient clustering in two ways. First, simplifying the multiple variables 

used for clustering down to only three, in this case age, graft choice, and pre-operative KOOS 

Sports subscale score, fails to consider the effect that other variables like the patient’s pre-

operative KOOS QoL score or the activity type that led to ACL injury may have on the 

assignment of a patient to a specific cluster. This is particularly evident when you consider that 

10% of the patients in Cluster 4 had a HT ACLR, which would have unintentionally led to those 

patients being assigned to either Cluster 1 or Cluster 5 (depending on their age) by clinicians 

using the tree diagram (Figure 9). The second challenge with simplification is that the precise cut-

off points for the continuous variables like age and pre-operative KOOS remain unclear, which 

may lead to problems when categorizing patients into “high” and “low” groups in the clinic. 

Overall, this simplification process serves to distance the model from its raw data-driven origins, 

leading to the potential for clinicians to assign patients to a different cluster than the model 

would have chosen.  
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As techniques to account for and mitigate the black-box nature of machine learning algorithms 

evolve, these challenges will hopefully become less impactful. In the meantime, those developing 

and using these models must proceed with caution to ensure that the outputs of machine 

learning models are not only accurate but also understandable and actionable within the clinical 

context. 

Putting it all Together 

After review of these six studies involving machine learning analysis of the Norwegian and 

Danish knee ligament registries, the biggest question that remains is: “what does it all mean?” 

The section that follows will seek to address this important question by exploring how they fit 

together in a broader clinical context.  

Clinical Relevance 

This project started with a goal that, on the surface, was relatively straightforward: to be able to 

accurately explain to a patient in the clinical setting what their individual and specific risk of 

ACLR failure or a poor outcome may be. These outcomes were chosen as they represent 

clinically relevant endpoints that are most often reported in the literature, but more importantly, 

are of extreme interest and importance to patients undergoing ACLR19. The underlying premise 

was that accurate outcome prediction is extremely difficult for clinicians to ascertain due to the 

overwhelming number of factors that not only influence a patient’s risk, but also interact with 

one another in complex ways. In contrast, if there were only one or two factors that drove risk, 

outcome prediction may be much simpler. Therefore, the task of this thesis was to address the 

problem of how to navigate the multitude of factors at play and develop a way to quantify and 

stratify patient risk. Complex problems often warrant complex solutions, and so the emerging 

field of machine learning was employed as a way forward.  

 

The concept of accurate ACLR outcome prediction is clinically relevant for several reasons. 

First, a more informed surgical discussion can help patients and surgeons to have realistic 

expectations that are aligned with one another. These discussions can also help with surgical 

decision-making, since non-operative management remains a viable option for many patients 

with ACL deficiency78,152,153. These discussions are especially important when counseling 
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skeletally immature patients or patients with a lower functional demand. Skeletally immature 

patients have been found to have a significantly elevated rate of ACLR graft failure and run the 

additional risk of damage to the growth plates during surgical management154. An approach that 

utilizes early rehabilitation and close follow-up with delayed surgical management when 

necessary has been employed successfully and may be considered in these patients78,155–159. 

Similarly, for patients with lower functional demand or those who may not experience significant 

limitations or instability, non-operative management may be a viable alternative to surgical 

management78,158–160, especially in light of evidence that ACLR is associated with increased rates 

of knee osteoarthritis161–163. Since surgeons often make recommendations regarding the optimal 

treatment for their patients with an ACL injury based on their estimation of the eventual 

outcome, it is important to optimize the accuracy of these predictions. A better understanding of 

the accuracy of these predictions is also needed to either instill confidence in these 

recommendations or to identify areas for improvement in outcome prediction. 

 

Accurate ACLR outcome prediction may also be useful for ultimately improving patient 

outcomes after surgery. In addition to closing the gap between expectations and reality, a better 

ability to predict outcomes may enable surgeons to modify treatment or rehabilitation plans for 

their patients. For example, if surgeons can accurately identify patients at higher risk of 

experiencing an inferior outcome, they may employ a different surgical technique (such as using 

a different graft choice or adding an adjunctive stabilization procedure like a LET), encourage 

those patients to be more diligent with their post-operative rehabilitation, or may delay their final 

clearance for return to sport. Meanwhile, for patients at lower risk of inferior outcomes, there 

may be potential for an accelerated rehabilitation approach or earlier return to activities. 

Additionally, psychological readiness for return to sport has been found to be an important 

factor affecting outcome after ACLR and surgeons may be able to influence the level of 

confidence in their patients through better understanding of the expected outcomes164–166.  

 

The ideal output for a risk prediction model should clearly articulate the degree of risk to the 

user. A model that produces a risk score of 8% for example, without any further context, is 

suboptimal. Is an 8% probability of failure considered high-risk? Would a decrease to 6% given a 

change in one of the variables represent a significant improvement? The risk output must be put 
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into context, such that the probability of failure can be interpreted relative to the average or 

expected range of risk scores. It may also be advantageous to include categorizations along with 

the numerical value, such as low, medium, high, and very high risk. The provision of greater 

context will lead to a better understanding of expectations and far more meaningful discussions 

with patients.  

 

Over five years has passed since work began on this project, and with that passage of time has 

come some important lessons, some of which were learned the hard way. The biggest lesson 

from this thesis is that, despite the clinical importance of the research question, the end result is 

that these studies possess no known clinical relevance themselves. That is, not in their current 

state.  

 

These novel models identified complex interactions between variables in the NKLR and DKRR, 

enabling the creation of in-clinic tools designed to rapidly estimate patient-specific outcome 

probabilities. The revision prediction model also subsequently underwent external validation. 

However, additional information is needed to properly appraise and determine the true clinical 

value of these prediction models. The clinical utility of these machine learning models is 

unknown because the accuracy of their predictions has not been compared with predictions 

made by orthopaedic surgeons. Without knowing how well surgeons can estimate the risk of a 

poor outcome for their patients, it is not possible to evaluate whether these, and other, machine 

learning models outperform clinician judgment. Therefore, there is a critical need to quantify the 

predictive capability of orthopaedic surgeons to establish the benchmark with which to compare 

prior and future prediction models for ACLR. 

 

Although the clinical relevance of this thesis remains indeterminate, it is proposed that the six 

studies within represent a valuable contribution to the literature and profession. At a minimum, 

they have highlighted some shortcomings of the national knee ligament registries, which have 

responded by taking steps to collect additional variables that may offer more insight into 

outcome prediction in the future. Together, this thesis also serves as a foundation upon which 

future efforts can build and learn from. The overall approach represents sound and rigorous 

methodology – starting with model development, followed by efforts to improve the model with 
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new data, and then pursuing external validation of the best performing model. The last step that 

remains is comparison of the models with human prediction accuracy. It is therefore still 

possible that the prediction models developed through this project may be clinically relevant if 

they are found to be superior to the prediction efforts of surgeons through a head-to-head 

comparison, a possibility that will be explored in the Future Opportunities and Next Steps section of 

this thesis.  

 

In the pursuit of clinically relevant prediction models, a pyramid approach is proposed, 

designating only those studies that have climbed to the top as potentially holding clinical value 

(Figure 12).  

 

Figure 12: Clinical relevance pyramid for clinical prediction modelling 

 

Although several prediction models have been developed in orthopaedics, most stall out at the 

bottom of the pyramid as very few have undergone external validation and only a select few have 

been validated against human performance. The order in which the steps up the pyramid are 

taken is less important than the climb itself. That is, a model could be found to be superior to 

human predictions prior to external validation. The important point is that each step is ultimately 

required to determine clinical relevance.  
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One final consideration is that as prediction models evolve in the future, new versions may only 

need to demonstrate superiority over the highest performing existing algorithm if the prevailing 

model has already been found to out-perform humans. In that situation, external validation 

remains crucial, along with careful consideration of whether repeat evaluation of performance 

versus humans is necessary for other reasons.  

Other Limitations 

The specific models that were chosen for machine learning analysis and the influence of missing 

data on model performance represent two additional limitations besides the ones discussed 

previously. Each study that performed machine learning analysis utilized multiple different 

methods that represent a range of approaches to the problem of outcome prediction. The 

models were then compared for accuracy and the best performing models were identified. 

Despite this approach, it is possible that a different machine learning method would have 

demonstrated superior performance.  

 

Regarding missing data in the registries, it is possible that the missing data was not random. For 

example, this may be the case if data collection improved over time which would lead to more 

complete data for patients who were enrolled in the registry more recently. Assessment of the 

impact of this missing data on model development suggested the patients with missing data were 

not meaningfully different from those with complete data and sample sizes were large for all 

studies except the external validation using the STABILITY I cohort. However, limiting the 

analysis to only those with complete data did result in reduced sample sizes which may have 

impacted the findings. Additionally, the data collection rates for the registry are high, but not 

perfect, leading to the likelihood that some patients who experienced revision surgery were not 

captured in the registry and therefore miscategorized as not having failed68.  
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Ethical Considerations 

The goal of clinical outcome prediction using machine learning is to quantify the likelihood of a 

particular outcome at a patient-specific level. This section will focus on the ethical considerations 

when applying retrospective population-based studies prospectively to an individual human 

being, especially when using new techniques and technology, for the purposes of guiding medical 

decisions.  

 

The concept that retrospective analysis can be used to guide prospective medical care is not a 

new one, and in fact, represents level II evidence for prognostic studies167. However, information 

gleamed from these studies are often applied to patients to guide diagnostic and management 

decisions in a general sense. Put another way, these studies are used to identify factors or 

variables that may affect one’s outcome, and results are often reported in terms of odds ratios, 

relative or absolute risk, or comparisons which suggest one treatment, intervention, or 

assessment tool is better, similar, or no worse than another. These studies are crucial to moving 

the profession forward as we strive to ultimately improve outcome. 

 

What then, makes an outcome prediction tool created through machine learning different from 

the traditional research approach, and how do we ensure responsible and ethical deployment of 

these models in clinical practice? These are common questions among clinicians and patients as 

they grapple with the acceptance of a new approach to health-related data and consider the 

ethical framework regarding responsible dissemination of findings and clinical implementation.  

 

This represents a rapidly evolving field and there are multiple ethical considerations related to the 

use of artificial intelligence in orthopaedics. One of the greatest ethical dilemmas facing 

researchers who seek to develop patient-specific prediction models, relates to the facilitation of 

appropriate implementation of these novel tools into clinical practice. There is also a 

responsibility to the entire profession – the researchers, clinicians, and patients alike – to provide 

appropriate context and honesty regarding the validity of the models in order to ensure that they 

are not misused or misinterpreted.  
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There are several differences between a machine learning approach to data compared with a 

more traditional approach168 and a few of these are relevant to a discussion focused on research 

ethics. First, machine learning approaches are often able to elucidate non-linear and complex 

relationships between variables in a dataset that may not be realizable through more 

conventional statistical analysis. This is important because, when applied to medical databases 

containing multiple variables including outcomes, it can enable the creation of patient-specific 

clinical prediction tools. These may take the shape of an online calculator or other in-office tool 

that can quantify an individual’s specific probability of achieving a specified outcome. There are 

several examples of this in the medical literature, and prediction performance of these models 

often match or exceed that of medical experts169–175.  

 

Misuse of these clinical prediction models may come in many forms. First, clinicians may 

inappropriately apply the tool to a population that is inherently different than the one used to 

develop the model. In fact, this represents the main limitation to the widespread adoption of 

many machine learning models as most do not undergo the necessary step of external 

validation77. In the case of this thesis, the NKLR prediction tool was subsequently evaluated for 

external validity using patients from the DKRR. One could correctly argue that these are two 

very similar patient populations despite being from different countries. The relevance of the 

prediction model to clinicians and patients in other parts of the world such as in Asia or North 

America was not evaluated in Paper IV and therefore, it was important not to advocate for 

deployment of the model outside of Scandinavia until the validity of the model on these different 

populations has been established.  

 

A second way clinical prediction models may be misused is for a clinician to over-rely on the 

output of the model and accept the results as truth or fact. This can be said for all artificial 

intelligence related tasks and is increasingly a topic of concern, for example with regards to large 

language models like Chat Generative Pre-Trained Transformer (ChatGPT) and its propensity to 

hallucinate176,177. The central issue that both researchers and clinicians must understand relates to 

the performance of these models, or more specifically, the imperfect nature of their 

performance.   
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The ability of a prediction model to estimate outcome following surgery is limited by three main 

factors: the quality of the data used to generate the model, the quantity of the data, and random 

chance. Researchers must take steps to minimize the impact of the first two through careful 

selection of the data source, but the impact of random chance is challenging to quantify and 

virtually impossible to control. Regarding efforts to predict ACLR failure, no prediction model 

will ever achieve perfect accuracy due to the inherent randomness associated with re-injury.   

 

There is a duty for those involved in model development to mitigate the risk of over reliance on 

their prediction models. Researchers must be honest with respect to the performance of their 

models and not exhibit hyperbolic enthusiasm that may falsely elevate expectations among 

clinicians. At times this may be a delicate balance between not over-inflating the importance of 

the model while also advocating for the positive impact these models can have among colleagues 

who exhibit skepticism (which is occasionally extreme and unjustified). It also follows that, 

especially in the early stages of machine learning adoption within the field, those that are more 

familiar with the techniques and technology must take on leadership roles to guide responsible 

research. These leaders must not only advocate for ethical application, but also must engage in 

education with their peers to empower clinicians and researchers to critically appraise and 

properly interpret the findings of these studies.  

 

The third way machine learning driven prediction models may be misused relates to the temporal 

nature of their development and deployment. This largely relates to machine learning models 

that do not apply reinforcement learning, which refers to the ability to continue to learn as new 

data is received. In this thesis, all models were developed using data collected between 2004 and 

2020. Over that period alone, surgical techniques, implants, and instruments have advanced – as 

has the understanding of risk factors and outcomes. Considering the ongoing evolution of the 

field, it is unreasonable to expect prediction models to maintain relevance far into the future, and 

so in a way, the work is never done.  

 

The challenge lies in identifying when the point has been reached that a model is no longer 

relevant. It is therefore imperative that researchers continually evaluate the effects that new data 

can have on prediction models. This can be done by evaluating the performance of the model 
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prospectively and watching for deterioration, or by re-calibrating the model with new data every 

few years. Given that data quantity is an integral component of model performance, there may 

also be a role for the establishment of international collaborative efforts aimed at aggregating 

large volumes of clinical data for this purpose. While this concept may have its own associated 

challenges associated with international data sharing principles and regulations, it nonetheless 

represents the best way to develop, evaluate, and deploy these prediction models on an ongoing 

basis.    

 

In an era that is increasingly being shaped by artificial intelligence, the ethical development and 

deployment of these models in orthopaedics will remain an important topic for the foreseeable 

future. Clinician scientists must not only apply sound ethical principles to their own work, but to 

help guide the profession in a similar fashion. The principles of informed consent and data 

protection concerns will also be at the forefront over the coming years as patient data is collected 

and utilized at an exponential rate. A thorough understanding of these issues combined with 

those related to the ethical dissemination and application of results is crucial for scientists 

engaged in big data research and clinical care. Discussions related to these ethical principles must 

occur early and often to ensure that patients are not forgotten amongst the vast troves of data, 

and that they are protected at every step of the journey – from the data collection through to 

clinical care.  
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Future Opportunities and Next Steps 

As data collection, computing power, and technology evolve, there is almost no limit to the 

potential impact of artificial intelligence in orthopaedic sports medicine and the management of 

ACL injuries. The following section will highlight some exciting developments that are poised to 

impact the field greatly in the coming years.  

Automated Registry Data Collection 

For the past 20 years in Scandinavia, the national knee ligament registries have been working to 

improve patient care for those with ACL injuries. However, the infrastructure has remained 

largely unchanged over this time period, with reliance on manual collection, validation, 

maintenance, and analysis of the registry data. With the recognition that additional variables are 

needed in the database, along with acknowledgement of the limitations of the current workflow, 

there is a defined need for evolution of the registries. Recent advancements in can now facilitate 

this vision.   

 

The current model for the knee ligament registries involves the manual collection of data from 

individual patients and their surgeons. Patients are first educated on the registry and asked to 

provide informed consent and data including demographics, details about their injury, and 

PROMs63–65,67. After surgery, patients are contacted at standardized time-points to provide 

follow-up PROM data. Regarding the data collected from the surgeons, the details of the surgical 

findings and procedures are manually inputted after surgery. Data are collected at the centralized 

registry headquarters and manually reviewed for validity and completion, with queries made 

based on noted deficiencies. 

 

However, the results of Paper III suggest that continued collection of the same data is unlikely to 

substantially increase knowledge and understanding of patient outcomes. To surpass this ceiling, 

an evolution of the registries is required and is indeed now possible thanks to the rapidly 

advancing field of artificial intelligence driven solutions. To evolve, the registries must be able to 

record and analyze additional information that cannot easily be obtained under the current 

infrastructure and data-collection processes. Patients and surgeons cannot simply be asked to 

provide more information due to the known limitations of survey fatigue and the subsequent 
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impact on compliance and data collection accuracy. To surpass this limitation, a shift from the 

current registry paradigm to one that leverages new technology to collect and interpret data from 

multiple sources is proposed. The ultimate goal of this initiative is the improvement in patient 

outcomes following ACL injury. 

 

The current resource-demanding workflow of the registries limits their efficiency and 

effectiveness. An evolution powered by artificial intelligence should therefore be focused on the 

following key elements of the registries: 

 

1. What data to collect?  

Currently, the registries rely on manual pre-specification of which variables should be collected 

(structured data). By only collecting pre-specified structured data, newly suspected risk factors 

that may be associated with outcome cannot be easily evaluated in the registries until the 

additional variable is added to the prospective registry form and then collected over a period of 

time. In contrast, a system that supports the prospective collection of unstructured data (without 

pre-specification) would lend itself to a more rapid ability to evaluate these novel risk factors 

based on the large volume of data already contained within the registry. This can be 

accomplished through integration with the electronic health record (EHR) and imaging 

repositories to create a more comprehensive and adaptable surgical registry. Additionally, given 

the recognized association between several non-surgical factors and ACLR outcome, this 

approach will also facilitate the ability to collect data related to rehabilitation, return to play 

readiness, and psychological factors that may play an important role in outcome prediction and 

optimization. 

 

One of the main reasons the knee ligament registries were created was the ability to identify 

implants or techniques associated with failure much earlier than would be possible through other 

surveillance or research methods63. Another advantage to a shift toward more automated and 

comprehensive data collection is the ability to include different diagnoses and surgical 

procedures in the registry. Examples include patellar instability, cartilage injuries, and meniscus 

pathology along with their associated surgical treatments. Incorporating more diagnoses and 
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their corresponding treatments into the registries, along with newly developed devices or 

implants, will help expand the ability to detect early failures and impact patient outcome.    

 

2. How to collect the data?  

The number of variables that can be manually collected from surgeons and patients is limited by 

survey fatigue, and adding more questions results in lower compliance rates. This requires 

registries to find the balance between the ideal number of variables to collect and the realistic 

number that can be obtained without sacrificing response rates and accuracy. This presents a 

significant barrier to registry evolution as improved data quantity (more variables) and quality 

(high compliance and accuracy) are mutually exclusive in the present registry model. 

 

However, much of the information collected by the registries is already contained within the 

patient EHR. While this data cannot be directly pulled into the registry database in the current 

model, this can be alleviated through the automated extraction of these data elements aided by 

large language models178, computer vision179, and a direct pipeline from the EHR to the registry. 

Valuable data sources may include consultation and follow-up clinical notes, operative reports, 

physiotherapy notes, plain radiographs, magnetic resonance imaging (MRI), computed 

tomography (CT), and radiology reports. Although this would not completely eliminate the need 

for data entry from the surgeons since some information is not easily captured in these formats, 

it would enable more purposeful and efficient manual data collection. Additionally, with less time 

spent completing duplicative tasks, surgeons will have more time to spend on direct patient care 

and other obligations. 

 

This innovative approach also has implications for patient-driven data collection using patient-

facing apps, modules, and fitness trackers. Together, these tools can help to increase patient 

engagement, monitor rehabilitation goals and progress, and streamline the collection of PROMs.  

 

3. How to validate the data? 

To be useful, the registry data must be accurate and valid. In the current model, data collection 

has been of high quality but relies on manual data entry and validation – steps that may be prone 
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to human error and require substantial human resources70. Data collection from multiple sources 

can be automatically screened for inaccuracies, inconsistencies, or missing data and flagged for 

manual review. This guided approach can optimize registry validation in real-time and lessen the 

administrative burden for the registry.  

 

4. How to use the data? 

The possibilities related to a system of ACL registries enriched with artificial intelligence are 

seemingly limitless. With vast troves of high-quality information from multiple sources, the 

ability to retrieve and analyze the data will benefit clinicians, researchers, and patients alike. 

Through the application of advanced algorithms, it may be possible to uncover previously 

unrecognized patterns and relationships in the registry and overcome the current predictive 

ceiling of the registries. Additionally, a transformative aspect of this approach is the ability to 

create digital twins for our patients that can enable surgeons to personalize treatment plans and 

more accurately predict treatment outcomes. The goal of this approach is to have more informed 

decision-making and improved patient outcomes. 

 

Another advantage to the incorporation of automated registry data collection is the ability to 

apply these innovations both prospectively and retrospectively. Standardizing tools to extract 

data from multiple sources can be used to facilitate the creation of new knee ligament registries 

for institutions or nations without existing registry infrastructure. Further, the potential to use 

historical documentation or imaging for data collection means that data, including newly 

recognized variables of interest, can be extracted in a retrospective manner to supplement the 

new or existing prospective registries. Expanding the ability to collect and analyze large troves of 

relevant data around the world holds immense potential for meaningful collaborative initiatives.   

 

Overall, the integration of artificial intelligence into the knee ligament registries presents a unique 

opportunity to transcend the limitations of traditional data collection and analysis methods. By 

leveraging new technology, these registries can expand their scope, enhance data accuracy, and 

unlock new insights that were previously unattainable. This evolution will not only streamline the 

workflow for surgeons and registry administrators but may also significantly enrich the quality of 

patient care. Embracing these technological advancements will ensure that the registries continue 
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to lead the way in musculoskeletal healthcare, providing valuable information that can shape the 

future of injury prevention, treatment, and ultimately improve patient outcomes. 

Prospective External Validation 

The prediction models in this thesis were developed and tested using data that date back to 2004, 

and the application of these models has not been validated prospectively. An important next step 

is to apply the algorithms developed in Papers I, II, and VI to a cohort of patients from the 

national knee ligament registries in Denmark, Norway, and Sweden to evaluate the prospective 

validity of the prior models on patients from 2019 and onwards. Additionally, it has been 

suggested that the addition of a LET to patients undergoing an ACLR with HT may behave 

more similarly to a patient receiving a BPTB with respect to revision rates. This study will 

therefore also evaluate the effect of anterolateral stabilization with respect to the revision 

prediction model. The results of this study will help answer the question of whether the 

performance of the ACLR outcome prediction models developed using retrospective data is 

retained when applied prospectively in Scandinavia.  

Testing ACL Reconstruction Outcome PredicTions (TAROT) Study 

Additional information is needed to properly appraise and determine the true clinical value of the 

existing ACLR outcome prediction models, as their performance has not been evaluated against 

orthopaedic surgeons. The Testing ACL Reconstruction Outcome PredicTions (TAROT) study 

(Figure 13) proposes to bridge this knowledge gap through assessment of the accuracy of 

orthopaedic surgeons at predicting the likelihood of a patient experiencing three clinically 

relevant outcomes following primary ACLR:  

1) revision surgery 

2) functional limitations  

3) achievement of PASS 

Once established, the accuracy of the human predictions will be directly compared with 

previously published revision prediction algorithms140,142–144, including the model developed in 

Paper I. Additional outcome measures include the change in surgeon predictions and accuracy 

before and after surgery, and the association between surgeon experience level and prediction 

accuracy.  
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Figure 13: Testing ACL Reconstruction Outcome PredicTions (TAROT) Study 

 

The results of this study will impact the ACLR literature by establishing the benchmark level of 

accuracy among orthopaedic surgeons regarding outcome prediction. If the surgeons outperform 

or perform similarly to the previously published prediction models, it suggests that more work is 

needed to improve clinical prediction models in the future. Once the benchmark accuracy of 

orthopaedic surgeons has been established, it will open the door to the development of models 

that seek to outperform, and therefore improve, the ability to predict surgical outcomes. 

However, if the surgeons underperform relative to one or more of the published models, it 

affirms the clinical utility of the algorithm while still establishing the minimum clinically relevant 

level of accuracy for future models.  

 

When tasked with predicting patient outcomes, the information available to inform the 

prediction is different for the machine learning algorithms and surgeons. Machine learning 

models are adept at calibrating risk through the interpretation of complex interactions between 

variables in large datasets. However, they are limited to variables that are easily measured and 

stored within the EHR or data repositories. In contrast, human risk stratification may be better 

at integrating unquantifiable information into the decision-making process, such as a 

conversation with the patient regarding their future goals and ambitions. Fundamentally, the 

question is not centered around whether surgeons can aggregate the same information better 

than machine learning algorithms, but whether they are able to use all of the information 

available to them (some of which is not accessible to machine learning models) to make more 

accurate predictions. 
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This large prospective study is a joint project between the University of Minnesota and Fowler 

Kennedy Sports Medicine Clinic in London, Canada. The aim is to record surgeons’ outcome 

predictions for 2,500 patients undergoing ACLR, involving 25 study sites from nine different 

countries. A pilot study is currently underway at three sites in Minnesota while funding for the 

larger study is being pursued. Once completed, this study will answer the question of how well 

surgeons can predict outcome for their patients undergoing ACLR.   
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Conclusions 

The overall objective of this thesis was to apply machine learning to the NKLR and DKRR to 

create and validate machine learning algorithms capable of predicting outcome following ACLR 

with particular emphasis on ease of use and clinical applicability. 

 

AIM 1: To identify the most important risk factors associated with subsequent revision following 

primary ACLR using supervised machine learning analysis of the NKLR (Paper I) 

 

The most important factors required for estimation of revision risk using the Cox Lasso model 

were: age at primary ACLR, pre-operative KOOS QoL score, graft choice, graft fixation method 

on the femur, and time between injury and primary ACLR. Each of these has previously been 

identified as risk factors associated with failure of ACLR.  

 

AIM 2: To develop a clinically useful prediction model to estimate patient-specific risk of 

subsequent revision following primary ACLR using supervised machine learning analysis of the 

NKLR (Paper I) 

 

A novel approach using supervised machine learning was employed to address the problem of 

outcome prediction. Analysis was carried out using data from the NKLR and several prediction 

models were developed. Overall, the prediction models were well-calibrated, with discrimination 

in the 0.67-0.69 range. The Cox Lasso model was selected for the creation of an online risk 

estimation calculator. 

 

AIM 3: To identify the most important risk factors associated with inferior patient reported 

outcome two years after primary ACLR using supervised machine learning analysis of the NKLR 

(Paper II) 
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Factors required for prediction of two-year post-operative inferior patient reported outcome 

were: pre-operative KOOS scores below the median on all subscales, presence of a cartilage 

injury, activity leading to the injury, previous surgery to the ipsilateral knee, pre-operative KOOS 

Sports score, pre-operative KOOS QoL score, BMI, and age at injury. Unlike the revision 

prediction model, the factors associated with KOOS QoL <44 two years after surgery were non-

modifiable by the surgeon. The most important predictors of post-operative PROM were pre-

operative PROMs, a finding consistent with other studies.  

 

AIM 4: To develop a clinically useful prediction model to estimate patient-specific risk of inferior 

patient reported outcome following primary ACLR using supervised machine learning analysis of 

the NKLR (Paper II) 

 

A novel approach using supervised machine learning was employed to address the problem of 

outcome prediction. Analysis was carried out using data from the NKLR and several prediction 

models were developed. Overall, the prediction models were well-calibrated, with discrimination 

in the 0.67-0.68 range, not including the random forest which performed more poorly. The 

GAM was selected for the creation of an online risk estimation calculator.  

 

AIM 5: To improve the accuracy of the revision prediction model through amalgamation of the 

NKLR and DKRR databases (Paper III)  

 

Merging the data from the NKLR and DKRR to create a larger sample size did not result in 

improved accuracy of the revision prediction model. 

 

AIM 6: To evaluate the external validity of the NKLR revision prediction model when applied to 

patients from the DKRR (Paper IV) 

 

The external validity of the Norwegian revision prediction model was subsequently assessed 

using the patients from the DKRR. Model concordance was similar, but calibration was worse at 
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predicting one-year and five-year outcomes when compared with the original model 

development study. This suggested that the revision prediction model may be valid for use 

outside of the original patient population, but the performance of the model on patients from 

outside of Scandinavia remains unclear.  

 

AIM 7: To evaluate the external validity of the NKLR revision prediction model when applied to 

patients from the STABILITY I randomized clinical trial (Paper V) 

 

The external validity of the Norwegian revision prediction model was subsequently assessed 

using the patients from the STABILITY I cohort. The revision prediction model performed best 

when patients who had a HT plus LET were coded as having received BPTB. Overall, the model 

performed similarly with the STABILTY I patients, but true assessment was limited by a small 

sample size, which produced a wide confidence interval.  

 

AIM 8: To identify distinct subgroups (clusters) of patients within the NKLR and DKRR with 

similar characteristics using an unsupervised learning technique, and determine how the rate of 

subsequent revision ACLR differs between them (Paper VI) 

 

Unsupervised learning analysis generated five clusters of patients with unique risk profiles. The 

five clusters could be divided into high-risk for Cluster 1 (9.9% revision rate), medium-risk for 

Cluster 2 (6.9% revision rate), and low-risk for Clusters 3-5 (3.1-4.7% revision rate).  

 

AIM 9: To develop a clinically relevant rapid risk-stratification algorithm based on the 

unsupervised learning clusters (Paper VI) 

 

Using SHAP analysis to guide interpretation of the clusters, a tree diagram was created to 

facilitate the assignment of future patients to a specific cluster based on age, graft choice, and 

pre-operative KOOS Sports subscale score. This may enable rapid risk stratification if validated 

prospectively.   
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Key Points 

There were several important takeaways from these studies. First, they highlight both the 

advantages and shortcomings of the knee ligament registries and have prompted changes to 

variable collection with the goal of improving data quality and quantity. Second, these studies lay 

out a systematic approach to the problem of outcome prediction and may be used to guide 

similar efforts in the future. Finally, although several prediction tools were developed, their 

clinical utility is uncertain as none have been compared with predictions made by surgeons. This 

missing step is crucial when determining the clinical relevance of prediction models and 

represents the next phase in the quest for improved outcome prediction.  

 

Collectively, these studies suggest optimism regarding the future of ACLR outcome prediction. 

Efforts to expand variable collection and facilitate international collaboration has the potential to 

build on this foundation and improve the accuracy of outcome prediction models. The 

knowledge gained from this thesis will be used to further refine ACLR outcome prediction, 

leading to more informed discussions with patients and, hopefully, improved patient care.  
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Predicting Anterior Cruciate Ligament
Reconstruction Revision

A Machine Learning Analysis Utilizing the Norwegian Knee Ligament Register

R. Kyle Martin, MD, FRCSC, Solvejg Wastvedt, BA, Ayoosh Pareek, MD, Andreas Persson, MD, PhD, Håvard Visnes, MD, PhD,
Anne Marie Fenstad, MS, Gilbert Moatshe, MD, PhD, Julian Wolfson, PhD, and Lars Engebretsen, MD, PhD

Investigation performed at the University of Minnesota, Minneapolis, Minnesota

Background: Several factors are associated with an increased risk of anterior cruciate ligament (ACL) reconstruction
revision. However, the ability to accurately translate these factors into a quantifiable risk of revision at a patient-specific
level has remained elusive. We sought to determine if machine learning analysis of the Norwegian Knee Ligament Register
(NKLR) can identify themost important risk factors associated with subsequent revision of primary ACL reconstruction and
develop a clinically meaningful calculator for predicting revision of primary ACL reconstruction.

Methods: Machine learning analysis was performed on the NKLR data set. The primary outcome was the probability of
revision ACL reconstruction within 1, 2, and/or 5 years. Data were split randomly into training sets (75%) and test sets
(25%). Four machine learning models were tested: Cox Lasso, survival random forest, generalized additive model, and
gradient boosted regression. Concordance and calibration were calculated for all 4 models.

Results: The data set included 24,935 patients, and 4.9% underwent a revision surgical procedure during a mean
follow-up (and standard deviation) of 8.1 ± 4.1 years. All 4 models were well-calibrated, with moderate concordance
(0.67 to 0.69). The Cox Lasso model required only 5 variables for outcome prediction. The other models either used
more variables without an appreciable improvement in accuracy or had slightly lower accuracy overall. An in-clinic
calculator was developed that can estimate the risk of ACL revision (Revision Risk Calculator). This calculator can
quantify risk at a patient-specific level, with a plausible range from near 0% for low-risk patients to 20% for high-risk
patients at 5 years.

Conclusions: Machine learning analysis of a national knee ligament registry can predict the risk of ACL reconstruction
revision with moderate accuracy. This algorithm supports the creation of an in-clinic calculator for point-of-care risk
stratification based on the input of only 5 variables. Similar analysis using a larger or more comprehensive data set may
improve the accuracy of risk prediction, and future studies incorporating patients who have experienced failure of ACL
reconstruction but have not undergone subsequent revision may better predict the true risk of ACL reconstruction
failure.

Level of Evidence: Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

T he anterior cruciate ligament (ACL) is one of the main
knee stabilizers, and its rupture can lead to pain, in-
stability, and functional limitation1. Injury rates have

been rising globally, and surgical reconstruction of the ACL is
often performed to restore normal biomechanics and to im-
prove knee stability2-5. Recent studies have associated several

factors with an increased risk of failed surgical reconstruc-
tion6-14. However, due to the complex relationships between
these various factors, accurate prediction and quantification of
patient-specific risk are challenging.

A novel approach to health-care research, machine
learning, has the potential to improve our predictive capability.

Disclosure: TheDisclosure of Potential Conflicts of Interest forms are provided with the online version of the article (http://links.lww.com/JBJS/G758).
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Machine learning refers to a set of techniques that model
complex relationships between variables in order to predict an
outcome. Relationships can be more complex than those as-
sessed with traditional statistical techniques. Although appli-
cations of machine learning in sports medicine have been slow
to develop, machine learning has broadly impacted the medical
field, including within orthopaedic surgery15,16. Established in
2004, the Norwegian Knee Ligament Register (NKLR) contains
demographic, injury, surgical, and outcome data on >25,000
patients. The NKLR has produced many studies since its in-
ception that have impacted our understanding of ACL
injuries11,12,17,18, and the application of machine learning pre-
sents the opportunity to further evaluate factors associated
with outcome.

Previous studies into the risk factors for ACL recon-
struction failure have assessed the strength of association (effect
measure) and the probability of seeing results at least as strong
as those that were observed if there is no true association
between the independent and the dependent variables. This has
resulted in the identification of numerous factors associated
with outcome such as age, sex, graft choice, fixation method,
body mass index (BMI), and return to pivoting sports11,12,19-21.
Although traditional statistical models require human selection
of variables thought to be of importance, machine learning
allows a computer to consider all possible combinations and
interactions of variables contained in a data set and their
relationships to the outcome of interest. The machine learning
analysis can identify which factors from this much larger pool
are focal in predicting the outcome. As with traditional
methods, machine learning can develop an algorithm to pre-
dict the outcome for future patients. However, more complex
interactions and relationships can be used in machine learning
predictive algorithms, which may yield more accurate and
patient-specific predictive capability.

An accurate predictive model for clinical outcome fol-
lowing ACL reconstruction would be beneficial for both the
orthopaedic surgeon and the patient. This would allow patient
and surgical information to guide shared clinical decision-
making with regard to patient-specific management. There are
currently no machine learning-driven models to predict out-
come after ACL reconstruction based on national knee liga-
ment registry data. The purpose of this study was therefore to
use machine learning analysis of the NKLR to identify the most
important risk factors associated with subsequent revision of
primary ACL reconstruction and develop a clinically meaningful
model for predicting primary ACL reconstruction revision. The
hypothesis was that machine learning analysis would enable
accurate prediction of revision risk for a patient undergoing a
primary ACL reconstruction.

Materials and Methods
Data Preparation

Patients contained within the NKLR with primary ACL
reconstruction surgery dates from January 2004 through

December 2018 were included. Those with missing values for
graft choice were excluded. All variables captured by the reg-

ister were considered for the analysis. We recoded or defined
new variables for the following: years between the injury and
the surgical procedure, meniscus injury identified at the sur-
gical procedure, any additional injury identified at the surgical
procedure, choice of graft (patellar tendon autograft, ham-
string tendon autograft, other), and height and weight variables
that combined data from patient and surgeon-reported varia-
bles. Time to revision was calculated as the number of years
from the primary surgical procedure to revision. For assessing
concordance at specific follow-up times, we considered
patients with a revision at or prior to the time point as expe-
riencing the event. We also created a predictor indicating if a
patient was below the median score in all 4 Knee Injury and
Osteoarthritis Outcome Score (KOOS) categories at the time of
the primary surgical procedure and scaled predictors for KOOS
Quality of Life (QoL) and Sports measures to a score of 10. The
final list of predictor variables included for analysis is presented
in Table I.

Model Creation
The primary outcome was the probability of revision ACL
reconstruction within 1, 2, and/or 5 years. We randomly split
the cleaned data into training sets (75%) that were used to fit
the models and test sets (25%) that were used to evaluate the
models. We used R (version 3.6.1; The R Foundation for Sta-
tistical Computing) to fit several machine learning models to
the training data22. All models and their performance measures
described below account for censoring of our time-to-event
outcome. “Censoring”means that, at any given follow-up time,
we do not have complete information on the outcome for all
patients. This is because some patients have not been in the
registry for the requisite number of years, and others have not yet
experienced revision and it is unknownwhen or if they ultimately
will. Four models intended for this type of data were tested: Cox
Lasso, survival random forest, generalized additivemodel (GAM),
and gradient boosted regression model (GBM). These models are
among the most commonly used in machine learning. The Cox
Lasso model is a semiparametric, penalized regression model that
selects a subset of variables for inclusion23. The survival random
forest model is a tree-based, nonparametric method adapted for
right-censored data such as ours24. GBMs are also nonparametric,
meaning that they do not require prespecification of a model
structure, and iteratively improve the model fit using all available
variables25,26. GAMs allow for machine-selected nonlinear rela-
tionships among a prespecified group of variables27. Further
details on each model are included in Appendix A.

We applied the L1-regularized Cox model (“Cox Lasso,”
package glmnet; lambda value selected via cross-validation) to
select variables and retained those with nonzero coefficients,
shown in the top left of Figure 1. We trained a survival random
forest (function rfsrc from package randomForestSRC) with node
size 200, 10 variables tried per split, 100 trees, and the full set of
predictors (Table I). We trained a GAM (function gam from
package mgcv) with those variables selected in the Cox Lasso,
using a smooth term for the years from injury to surgery pre-
dictor. Finally, we trained aGBM (functions gbm and basehaz.gbm
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from package gbm), using the full set of predictors, a shrinkage
parameter of 0.001, and 6,550 trees (number of trees selected via
cross-validation). To maximize accuracy for the tree-based
methods, we used a finer grouping for fixation device variables
(Supplementary Tables 1a, 1b, and 1c). To achieve a more direct
comparison between the models using variable selection and
those using the full set of predictors, we also trained the random
forest and GBM using only predictors selected in the Cox Lasso.
All 4 models were restricted to patients with complete data for the
predictors used (see Table II and Missing Data section below).

Model Evaluation
We evaluated model performance by calculating predicted sur-
vival probabilities for the held-out test data using the trained
models. Model calibration was assessed using a version of the
Hosmer-Lemeshow statistic that accounts for censoring28. Cali-
bration refers to the accuracy of the risk estimates, comparing
the expected outcomes with the actual observed outcomes. This
statistic sums the average misclassification in each predicted risk

TABLE I Characteristics of the Registry Population and Variables
Considered for Machine Learning Analysis

Characteristic or Variable*
Values

(N = 24,935)

Age
At surgery† (yr) 28 ± 11
At injury† (yr) 27 ± 10
Missing data‡ 1,251 (5%)

Sex‡
Male 14,019 (56%)
Female 10,916 (44%)

BMI† (kg/m2) 25.0 ± 3.8
Missing data‡ 7,920 (32%)

KOOS QoL at primary surgery† 3.49 ± 1.86
Missing data‡ 5,149 (21%)

KOOS Sports at primary surgery† 4.28 ± 2.73
Missing data‡ 5,324 (21%)

Below median on all KOOS subscales‡
Yes 3,972 (16%)
No 15,982 (64%)
Missing data 4,981 (20%)

Hospital geographic region‡
Southeast 9,335 (37%)
West 3,974 (16%)
Central 2,162 (8.7%)
North 958 (3.8%)
Missing data 8,506 (34%)

Hospital type‡
Public 16,429 (66%)
Private 8,506 (34%)

Injury‡
Meniscus 13,145 (53%)
Cartilage 5,801 (23%)
Any 171 (0.7%)
Posterior cruciate ligament 398 (1.6%)
Medial collateral ligament 1,993 (8.0%)
Lateral collateral ligament 464 (1.9%)
Posterolateral corner 243 (1.0%)
Missing data 2,720

(10.9%)

Graft choice‡
Bone-patellar tendon-bone autograft 9,891 (40%)
Hamstring autograft 14,481 (58%)
Unknown or other 563 (2.3%)

Tibial fixation device‡
Interference screw 19,283 (77%)
Suspension or cortical device 2,367 (9.5%)
Unknown or other 3,285 (13%)

continued

TABLE I (continued)

Characteristic or Variable*
Values

(N = 24,935)

Femoral fixation device‡
Interference screw 8,287 (33%)
Suspension or cortical device 13,072 (52%)
Unknown or other 3,576 (14%)

Fixation device combination‡
2 interference screws 8,086 (32%)
Interference or suspension 154 (0.6%)
2 suspension or cortical devices 1,809 (7.3%)
Suspension or interference 9,725 (39%)
Unknown or other 5,161 (21%)

Injured side‡
Right 12,675 (51%)
Left 12,260 (49%)

Previous surgical procedure‡
On contralateral knee 1,804 (7.2%)
On ipsilateral knee 4,213 (17%)

Time from injury to primary surgery† (yr) 1.63 ± 3.26
Missing data‡ 1,255 (5%)

Systemic antibiotic prophylaxis‡
Yes 24,769 (99%)
No 108 (0.4%)
Missing data 58 (0.2%)

*All variables represent patient demographic characteristics,
injury, patient-reported outcome scores, or surgical details at
the time of the primary ACL reconstruction. †The values are given
as the mean and the standard deviation. ‡The values are given as
the number of patients, with the percentage in parentheses.
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quintile and converts the sum into a chi-square statistic. Larger
calibration statistics correspond to smaller p values, and signif-
icance means that the null hypothesis of perfect calibration is
rejected. Concordance was calculated using theHarrell C-index29

at 1, 2, and 5-year follow-up times. The C-index measures the
proportion of ranked pairs of observations in which the pre-
dicted ranking corresponds with true outcomes. It is a general-
ization of the area under the curve (AUC) appropriate for
censored data, where not all patients have completed the follow-
up time. As with the AUC, the C-index ranges from 0 to 1, with
1 indicating perfect concordance.

Missing Data
To assess the impact of restricting data to complete cases, we
retrained the models using multiple imputation. This common
statistical technique fills in a patient’s missing data values based
on characteristics of other patients in the population. Because

our population had nontrivial missing data on several varia-
bles, multiple imputation allowed us to gauge the reasonable-
ness of excluding these incomplete observations.We conducted
multivariate imputation by chained equations (MICE) with 5
imputations on both training and test data (functionmice from
package mice). Using the variables with nonzero coefficients in
the complete-case Cox Lasso, we refit the Cox model on

Fig. 1

Feature importance. The 4 plots show relative feature importance in each of the machine learningmodels. The highlighted bars indicate features selected
into the Cox Lasso model. The random forest plot shows variables with importance of >0.0005 and the gradient boosted plot shows variables with
importance of >0, for readability. The orange bars represent variables selected as important in the Cox Lassomodel, and the gray bars represent the other
variables used in the models.

TABLE II Proportion of Complete Cases by Model

Model
Total
Cases

Incomplete
Cases

Complete
Cases

Cox Lasso and GAM 24,935 6,048 76%

Random forest and
GBM

24,935 11,663 53%
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imputed data, averaging predictions over the 5 imputations.
We similarly refit the GAM and the GBM. For the random
forest model, imputation was done using the adaptive tree
imputation algorithm of Ishwaran et al.24, as implemented in
the rfsrc function from the randomForestSRC R package. We
maintained the default of 1 iteration of the algorithm for
imputing training data. Supplementary Tables 2a through 2d
show model performance with imputation on training data
only and training and test data.

Source of Funding
This study was funded by the Norwegian Arthroplasty & Knee
Ligament Register, the University of Oslo School of Medicine,
and a Norwegian Centennial Chair seed grant. Funding sup-
ported the machine learning analysis and interpretation. The
funding agencies had no direct role in the investigation.

Results
Data Characteristics

Table I describes characteristics of the registry population at
the time of the primary surgical procedure and the varia-

bles included for analysis. After data cleaning (5 patients were
excluded for missing graft choice), 24,935 patients met the
inclusion criteria; of these patients, 1,219 (4.9%) underwent a
revision surgical procedure during a mean follow-up period
(and standard deviation) of 8.1 ± 4.1 years. Table III presents
the proportion of patients with complete follow-up at each of
the 3 time points. The population was predominantly male
(56%), with a mean age of 27 ± 10 years at the time of the
primary injury and 28 ± 11 years at the time of the surgical
procedure.

To assess the potential impact of missing data on our
results, we compared covariate distributions between complete
cases and the full data set (Supplementary Tables 1a, 1b, and
1c). Although the large sample size results in the complete cases
and the full data set being significantly different (p < 0.05) on
multiple variables, the magnitudes of the between-group dif-
ferences were generally small and not clinically meaningful.

Model Performance
All 4 models were generally well-calibrated, with concor-
dance in the moderate range (0.67 to 0.69). Only the 2-year

TABLE III Description of Censoring

Follow-up Time Patients with Revision*
Patients with Complete

Follow-up and No Revision*
Patients with Incomplete

Follow-up and No Revision*†

1 year 190 (0.8%) 22,908 (91.9%) 1,837 (7.4%)

2 years 529 (2.1%) 20,703 (83.0%) 3,703 (14.9%)

5 years 999 (4.0%) 15,107 (60.6%) 8,829 (35.4%)

*The values are given as the number of patients, with the percentage in parentheses. †This category represents patients who have not yet
reached the specified end point.

TABLE IV Model Performance Measures

Model Concordance Calibration Statistic Calibration P Value

Probability of revision: 1 year
Cox Lasso 0.686 4.89 0.18
Random forest 0.672 3.12 0.374
GAM 0.687 4.79 0.188
GBM 0.669 4.98 0.174

Probability of revision: 2 years
Cox Lasso 0.684 11.35 0.01
Random forest 0.67 11.66 0.009
GAM 0.685 11.19 0.011
GBM 0.666 3.76 0.288

Probability of revision: 5 years
Cox Lasso 0.683 6.19 0.103
Random forest 0.67 3.71 0.295
GAM 0.684 6.98 0.073
GBM 0.665 0.38 0.944

149

THE JOURNAL OF BONE & JOINT SURGERY d J B J S .ORG

VOLUME 104-A d NUMBER 2 d JANUARY 19, 2022
PREDICT ING ANTER IOR CRUCIATE LIGAMENT RECONSTRUCT ION

REVI S ION



Cox Lasso model, random forest model, and GAM had
calibration p values between 0.01 and 0.05, suggesting
modest evidence of miscalibration (Table IV). The GBM
had a small edge in calibration for 2-year and 5-year follow-
up times. However, concordance was slightly lower for the
GBM and the random forest model at all follow-up times
(0.67 compared with 0.68).

Imputing missing data did not significantly improve
performance for any of the models (Supplementary Tables 2a
through 2d). When the random forest model and the GBM
were restricted to the Cox Lasso predictors, calibration wors-
ened substantially when limited to complete cases and stayed
about the same under imputation. Concordance was virtually
unchanged (Supplementary Tables 3a and 3b).

TABLE V Randomly Selected Example Patients from 3 Predicted 5-Year Risk Groups*

Variable Low-Risk Patients Medium-Risk Patients High-Risk Patients

Age (yr) 39 15 15

KOOS QoL at primary
surgery (points)

25 25 6

Graft choice Hamstring autograft Bone-patellar tendon-bone autograft Hamstring autograft

Femoral fixation device Suspension or cortical device Interference screw Suspension or cortical device

Time between injury and
primary surgery (mo)

14 9 8

Risk of revision
At 1 year 0.5% 1.2% 2.8%
At 2 years 1.4% 3.6% 8.5%
At 5 years 2.8% 7.2% 17.2%

*Low (<5%),medium (between5%and 15%), and high (>15%). The patients’ values for each variable used in the Coxmodel are given, alongwith the
Cox model-predicted risk of revision at 1, 2, and 5 years.

Fig. 2

Risk of revision ACL reconstruction in 3 randomly selected example patients corresponding with Table V.
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Factors Predicting Outcome
The most important predictors for revision in the Cox
Lasso model, in order, were graft choice, femoral fixation
device, KOOS QoL at the time of the surgical procedure,
years from the injury to the surgical procedure, and age at
the time of the surgical procedure. In the random forest
model, predictors in the top third by variable importance
score also included age at the time of the injury, tibial fix-
ation device, and fixation device combination. The most
important features in both the GAM and the GBM were
relatively similar to those in the Cox Lasso model. The Cox
Lasso model and the GAM quantify feature importance in
terms of effect size associated with the variable. The other
models use the difference in the model error rate that
results if the feature is removed (Fig. 1).

Risk-Prediction Calculator
The Cox Lasso model was selected to create an easy-to-use in-
clinic calculator to predict the risk of ACL reconstruction
revision (Revision Risk Calculator). Whereas the overall risk
of revision in the registry was 4.9%, this calculator can
quantify the risk at a patient-specific level, with a plausible
range from near 0% for low-risk patients to 20% for high-
risk patients at 5 years. Table V, Figure 2, and Video 1 dem-
onstrate examples of the calculator’s risk prediction using 3
sample patients.

Discussion

The most important finding of this study was that machine
learning analysis of a knee ligament register allows the

creation of a validated algorithm to predict a patient’s risk of
ACL reconstruction revision with moderate accuracy.
Additionally, despite having 24 possible prognostic variables
contained within the NKLR, the algorithm required only 5
factors for prediction: age and KOOS QoL at the time of the
primary surgical procedure, graft choice, femoral fixation
device, and the number of years between the injury and the
primary surgical procedure. Using this algorithm, an in-clinic
calculator was developed that can estimate revision risk.

This study represents the first machine learning-driven
model for predicting the outcome of ACL reconstruction
at a patient-specific level. Currently, the risk of a patient
undergoing a revision ACL reconstruction is estimated on the
basis of clinical experience and subjective consideration of the
known risk factors. Although it is generally accepted that these
factors influence the outcome, the ability to accurately quantify
this risk has remained elusive. For the clinician, the introduc-
tion of an easy-to-use calculator can guide the patient-specific
discussion surrounding the surgical options and realistic out-
come goals.

Machine learning is a relatively new tool in the
health-care research realm. In this study, 4 models were
used to analyze the data and create algorithms predicting
the risk of undergoing a revision ACL reconstruction. All
models first identified which factors were predictive of a
revision surgical procedure and then calculated the relative

weight of their influence on the risk of this outcome. Of all
of the various factors contained within the registry, the Cox
Lasso model identified only 5 variables necessary to predict
outcome, and the other 3 models either used more variables
without an appreciable improvement in accuracy or had
slightly lower accuracy overall. For this reason, the Cox
Lasso model was selected for creation of the in-clinic
calculator.

It is interesting to note that several variables that have
previously been considered important for predicting ACL
reconstruction failure were not necessary for inclusion in the
Cox Lasso machine learning model. Some examples include
sex19, tibial fixation12, and increased BMI20. Variables were
excluded from this model using the Lasso technique, which
retains only those predictors adding significantly to the
model’s accuracy. Although these previously identified risk
factors are no doubt associated with outcome, the Lasso
method suggests that they are either less important than the
factors selected by the Lasso or somehow represented in those
factors. In comparison with the Cox Lasso model, the random
forest model and the GBM included more variables. However,
this inclusion did not significantly improve performance. The
reason for this is similar: the information offered by these
added variables is already contained within the few most
important predictors, so adding the extra variables does not
improve performance. All 5 of the variables that were found to
be important for outcome prediction have previously been
identified as being associated with an increased risk of revi-
sion ACL reconstruction11,12,14,17,20,21,30.

Revision ACL reconstruction was selected as the pri-
mary outcome measure for this study because of the long
follow-up and completeness of the data provided for this end
point. This is in contrast to a study designed to predict ACL
reconstruction failure based on revision surgical procedures
and/or inferior patient-reported outcomes. Although this
wider outcome would also capture patients who experience a
failure but do not undergo a subsequent revision surgical
procedure, the number of patients within the register with
patient-reported outcome measures substantially drops over
time. In contrast, the overall compliance with data entry in
the register is 86%4. Machine learning analysis requires a
large volume of robust data and we therefore chose this
narrower outcome measure to maximize patient inclusion
and model accuracy.

There were limitations to the current study. First,
although we considered a variety of machine learning methods
in this analysis, it is possible that a model not considered might
have performed better. Second, there were substantial missing
data in some predictors such as BMI (32%) and preoperative
KOOS (21%), and we could not rule out that data were not
missing at random. We noted that observations with complete
data for all variables included in the random forest model and
the GBM tended to be newer to the registry than incomplete
observations, possibly reflecting improvement in data collec-
tion over time. Additionally, revision was a relatively rare
outcome in these data (<5% of individuals), and most patients
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were predicted as being at low risk for revision. For this large
majority of low-risk patients, functional scores might have
offered more clinical insight.

There were also limitations with regard to the clinical
application of this analysis. Especially in the case of the
random forest model and the GBM, our models used varia-
bles that may not have been readily available in a clinical
setting. Clinical utility was greatest with the Cox Lasso
model, which required only 5 variables and showed no sig-
nificant difference in performance from the more complex
models. Further, the results of this study may not be appli-
cable to populations in other countries as they represented
data from a single national register. Although national reg-
isters offer generalizability and real-world applicability31, the
large number of surgeons included in the data collection may
also have produced wide variability in surgical decision-
making, skill, and technique. Finally, although the machine
learning algorithm was well-calibrated, the concordance was
moderate. The accuracy of the model would presumably be
improved if a larger data set, such as one composed of
combined data from multiple registries or one that included
additional variables, was assessed. Potentially important
variables may include coronal or sagittal alignment (tibial
slope), physical examination findings, rehabilitation in-
formation, or surgical technique details such as tunnel
position or graft size.

In conclusion, machine learning analysis of a national
knee ligament register can predict the risk of ACL recon-
struction revision with moderate accuracy. This supports the
creation of an in-clinic calculator for point-of-care risk strati-
fication based on the input of only 5 variables. Similar analysis
using larger or more comprehensive data may improve the
accuracy of risk prediction, and future studies incorporating
patients who have experienced a failure of ACL reconstruction
but have not undergone subsequent revision may better predict
the true risk of ACL reconstruction failure.
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Appendix A: Machine Learning Models 

Cox Lasso 

The Cox Lasso applies Lasso (L1) regularization to the Cox proportional hazards model for 
regression on right-censored time-to-event outcomes. The method performs variable selection by 
applying a penalty during model fitting that sets less important predictor coefficients to zero. The 
remaining (non-zero) coefficients comprise the selected predictors. A tuning parameter controls 
the extent of this shrinkage: larger values of the tuning parameter correspond to more shrinkage 
and thus the selection of fewer predictors. We fit the Cox Lasso using the glmnet package in R, 
with the tuning parameter selected via cross-validation to balance model simplicity and fit.1 

Survival Random Forest 

The survival random forest, as implemented in the randomForestSRC R package, uses an 
ensemble tree method designed for right-censored time-to-event data. A log-rank split rule is 
used, and the estimates associated with each terminal node are computed using the Kaplan-Meier 
estimator (survival estimate) and the Nelson-Aalen estimator (cumulative hazard estimate). 
Estimates for an individual are averaged over all bootstrap samples for which the individual is 
out of bag (OOB). Prediction error for the forest is measured by 1-C, where C is Harrell’s 
concordance index, a measure of accuracy in ranking pairs in terms of their predicted and actual 
survival.2 

Generalized additive model 

A generalized additive model (GAM) is a regression model that allows for non-linear 
relationships between predictors and the outcome. In the R package mgcv, which we used for our 
model, smooth terms are fit using penalized regression splines. The generalized additive model 
accommodates right-censored time-to-event data by fitting a Cox proportional hazards model 
with the smooth terms incorporated in the partial likelihood.3 

Gradient boosted regression 

Gradient boosting uses an iterative method to fit a regression function to the data. At each 
iteration, the gradient, or the derivative of the loss function with respect to the current regression 
function, is calculated. The regression function is then updated in the direction of this gradient, 
improving the fit. Gradient boosted regression as implemented in the R package gbm, which we 
used for our model, uses regression trees as the functions. To accommodate right-censored time-
to-event data, the model uses the negative log partial likelihood under the Cox proportional 
hazards model as the loss function.4,5 
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Supplementary Tables 
 

Supplementary Table 1a: Complete/incomplete case comparison 

Variable* 
Full data 
N = 24935 

Cox Lasso/GAM 
complete cases 
N = 18887 

Random forest/GBM 
complete cases** 
N = 13272 

Years: surgery to present (1/2020) 8.1 (4.1) 8.4 (4.1) 6.5 (3.1) 
Revision 1219 (4.9%) 975 (5.2%) 619 (4.7%) 
Follow-up time/Time to revision 6.7 (4.2) 7.1 (4.2) 5.2 (3.1) 
Age at surgery 28 (11) 28 (10) 28 (11) 
Age at injury 27 (10) 26 (10) 26 (10) 

Missing 1251 0 0 
Sex    

Male 14019 (56%) 10452 (55%) 7302 (55%) 
Female 10916 (44%) 8435 (45%) 5970 (45%) 

BMI 25.0 (3.8) 25.0 (3.8) 25.0 (3.8) 
Missing 7920 5462 0 

QOL score at surgery 3.49 (1.86) 3.49 (1.86) 3.52 (1.88) 
Missing 5149 0 0 

Sports score at surgery 4.28 (2.73) 4.28 (2.73) 4.34 (2.74) 
Missing 5324 192 0 

Below median on all KOOS 3972 (20%) 3698 (20%) 2541 (19%) 
Missing 4981 0 0 

Hospital type    
Southeast 9335 (37%) 6853 (36%) 4621 (35%) 
West 3974 (16%) 3080 (16%) 2112 (16%) 
Central 2162 (8.7%) 1616 (8.6%) 1013 (7.6%) 
North 958 (3.8%) 547 (2.9%) 308 (2.3%) 
Private 8506 (34%) 6791 (36%) 5218 (39%) 

Meniscus injury 13145 (53%) 9957 (53%) 7219 (54%) 
Cartilage injury 5801 (23%) 4464 (24%) 3008 (23%) 
Any further injury 171 (0.7%) 92 (0.5%) 59 (0.4%) 
PCL injury 398 (1.6%) 213 (1.1%) 127 (1.0%) 
MCL injury 1993 (8.0%) 1458 (7.7%) 1125 (8.5%) 
LCL injury 464 (1.9%) 302 (1.6%) 241 (1.8%) 
PLC injury 243 (1.0%) 134 (0.7%) 93 (0.7%) 
Graft choice    

BPTB 9891 (40%) 7393 (39%) 5363 (40%) 
Hamstring 14481 (58%) 11142 (59%) 7591 (57%) 
Unknown/Other 563 (2.3%) 352 (1.9%) 318 (2.4%) 

Damaged side.    
Right 12675 (51%) 9598 (51%) 6733 (51%) 
Left 12260 (49%) 9289 (49%) 6539 (49%) 
Missing 0 (0%) 0 (0%) 0 (0%) 

Previous surgery on opposite knee 1804 (7.2%) 1340 (7.1%) 975 (7.3%) 
Previous surgery on same knee 4213 (17%) 3167 (17%) 1852 (14%) 
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Time injury to surgery (years) 1.63 (3.26) 1.63 (3.27) 1.54 (3.10) 

Missing 1255 0 0 
Systemic Antibiotic Prophylaxis 24769 (99%) 18784 (99%) 13231 (100%) 

Missing 58 (0.2%) 39 (0.2%) 28 (0.2%) 
*Statistics presented: Mean (SD); n (%) 
**Fixation device variables (used in random forest and gradient boosted regression models) are omitted from this 
table for readability (see supplement Table 2c). 
 
Supplementary Table 1b: Cox Lasso/generalized additive model complete/incomplete case comparison 

Variable* 
Incomplete 
N = 6048 

Complete 
N = 18887 

Total 
N = 24935 P-value** 

Years: surgery to present (1/2020) 7.0 (4.0) 8.4 (4.1) 8.1 (4.1) <0.001 
Revision 244 (4.0%) 975 (5.2%) 1219 (4.9%) <0.001 
Follow-up time/Time to revision 5.7 (4.0) 7.1 (4.2) 6.7 (4.2) <0.001 
Age at surgery 30 (11) 28 (10) 28 (11) <0.001 
QOL score at surgery 3.43 (1.86) 3.49 (1.86) 3.49 (1.86) 0.33 

Missing 5149 0 5149  
Graft choice    <0.001 

BPTB 2498 (41%) 7393 (39%) 9891 (40%)  
Hamstring 3339 (55%) 11142 (59%) 14481 (58%)  
Unknown/Other 211 (3.5%) 352 (1.9%) 563 (2.3%)  

Femur fixation device    <0.001 
Interference screw 1942 (32%) 6345 (34%) 8287 (33%)  
Suspension/cortical device 3065 (51%) 10007 (53%) 13072 (52%)  
Unknown/Other 1041 (17%) 2535 (13%) 3576 (14%)  

Time injury to surgery (years) 1.61 (3.21) 1.63 (3.27) 1.63 (3.26) 0.76 
Missing 1255 0 1255  

*Statistics presented: Mean (SD); n (%) 
**Statistical tests performed: t-test, chi-square test 
 
Supplementary Table 1c: Random forest/gradient boosted regression complete/incomplete case 
comparison 

Variable* 
Incomplete 
N = 11663 

Complete 
N = 13272 

Total 
N = 24935 P-value** 

Years: surgery to present (1/2020) 9.9 (4.4) 6.5 (3.1) 8.1 (4.1) <0.001 
Revision 600 (5.1%) 619 (4.7%) 1219 (4.9%) 0.084 
Follow-up time/Time to revision 8.4 (4.6) 5.2 (3.1) 6.7 (4.2) <0.001 
Age at surgery 29 (11) 28 (11) 28 (11) <0.001 
Age at injury 27 (10) 26 (10) 27 (10) <0.001 

Missing 1251 0 1251  
Sex    <0.001 

Male 6717 (58%) 7302 (55%) 14019 (56%)  
Female 4946 (42%) 5970 (45%) 10916 (44%)  

BMI 25.2 (3.8) 25.0 (3.8) 25.0 (3.8) <0.001 
Missing 7920 0 7920  

QOL score at surgery 3.43 (1.82) 3.52 (1.88) 3.49 (1.86) 0.002 
Missing 5149 0 5149  
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Sports score at surgery 4.16 (2.70) 4.34 (2.74) 4.28 (2.73) <0.001 

Missing 5324 0 5324  
Below median on all KOOS 1431 (21%) 2541 (19%) 3972 (20%) <0.001 

Missing 4981 0 4981  
Hospital type    <0.001 

Southeast 4714 (40%) 4621 (35%) 9335 (37%)  
West 1862 (16%) 2112 (16%) 3974 (16%)  
Central 1149 (9.9%) 1013 (7.6%) 2162 (8.7%)  
North 650 (5.6%) 308 (2.3%) 958 (3.8%)  
Private 3288 (28%) 5218 (39%) 8506 (34%)  

Meniscus injury 5926 (51%) 7219 (54%) 13145 (53%) <0.001 
Cartilage injury 2793 (24%) 3008 (23%) 5801 (23%) 0.017 
Any further injury 112 (1.0%) 59 (0.4%) 171 (0.7%) <0.001 
PCL injury 271 (2.3%) 127 (1.0%) 398 (1.6%) <0.001 
MCL injury 868 (7.4%) 1125 (8.5%) 1993 (8.0%) 0.003 
LCL injury 223 (1.9%) 241 (1.8%) 464 (1.9%) 0.61 
PLC injury 150 (1.3%) 93 (0.7%) 243 (1.0%) <0.001 
Graft choice    0.006 

BPTB 4528 (39%) 5363 (40%) 9891 (40%)  
Hamstring 6890 (59%) 7591 (57%) 14481 (58%)  
Unknown/Other 245 (2.1%) 318 (2.4%) 563 (2.3%)  

Damaged side.    0.74 
Right 5942 (51%) 6733 (51%) 12675 (51%)  
Left 5721 (49%) 6539 (49%) 12260 (49%)  
Missing 0 (0%) 0 (0%) 0 (0%)  

Previous surgery on opposite knee 829 (7.1%) 975 (7.3%) 1804 (7.2%) 0.48 
Previous surgery on same knee 2361 (20%) 1852 (14%) 4213 (17%) <0.001 
Time injury to surgery (years) 1.74 (3.44) 1.54 (3.10) 1.63 (3.26) <0.001 

Missing 1255 0 1255  
Systemic Antibiotic Prophylaxis 11538 (99%) 13231 (100%) 24769 (99%) <0.001 

Missing 30 (0.3%) 28 (0.2%) 58 (0.2%)  
Femur fixation device    <0.001 

ACL TightRope 28 (0.2%) 16 (0.1%) 44 (0.2%)  
Aesculap Position ACL 27 (0.2%) 27 (0.2%) 54 (0.2%)  
BioComposite SwiveLock C 1 (<0.1%) 0 (0%) 1 (<0.1%)  
Biodegr screw 50 (0.4%) 53 (0.4%) 103 (0.4%)  
BioRCI 4 (<0.1%) 3 (<0.1%) 7 (<0.1%)  
BioRCI-HA 2 (<0.1%) 0 (0%) 2 (<0.1%)  
Biosure HA 4 (<0.1%) 31 (0.2%) 35 (0.1%)  
Biosure HA Interference screw 0 (0%) 1 (<0.1%) 1 (<0.1%)  
Biosure PK 0 (0%) 2 (<0.1%) 2 (<0.1%)  
BioTenodesis Screw System 1 (<0.1%) 0 (0%) 1 (<0.1%)  
Bone Mulch 483 (4.2%) 135 (1.0%) 618 (2.5%)  
Bone Mulch Screw 1 (<0.1%) 0 (0%) 1 (<0.1%)  
BTB TightRope 87 (0.8%) 45 (0.3%) 132 (0.5%)  
Comp non-degr 139 (1.2%) 185 (1.4%) 324 (1.3%)  
Cortical button 78 (0.7%) 76 (0.6%) 154 (0.6%)  
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Endobutton 3260 (28%) 5349 (41%) 8609 (35%)  
EndoButton CL 2 (<0.1%) 0 (0%) 2 (<0.1%)  
Endobutton CL BTB 465 (4.1%) 811 (6.2%) 1276 (5.2%)  
Endobutton CL Ultra 16 (0.1%) 43 (0.3%) 59 (0.2%)  
EzLoc 1152 (10%) 594 (4.5%) 1746 (7.1%)  
EZLoc 3 (<0.1%) 0 (0%) 3 (<0.1%)  
Full Thread Interference screw 2 (<0.1%) 2 (<0.1%) 4 (<0.1%)  
Guardsman Femoral 1 (<0.1%) 1 (<0.1%) 2 (<0.1%)  
Linvatec Cannulated 1 (<0.1%) 0 (0%) 1 (<0.1%)  
Metal int screw 635 (5.5%) 866 (6.6%) 1501 (6.1%)  
Other suspension devices/cortical 9 (<0.1%) 13 (<0.1%) 22 (<0.1%)  
Other Suspension devices/cortical 226 (2.0%) 305 (2.3%) 531 (2.2%)  
Other transfemoral devices 2 (<0.1%) 0 (0%) 2 (<0.1%)  
Peek Interference Screw 14 (0.1%) 5 (<0.1%) 19 (<0.1%)  
Profile interference screw 86 (0.8%) 333 (2.5%) 419 (1.7%)  
Profile Interference Screw 0 (0%) 1 (<0.1%) 1 (<0.1%)  
Propel Cannulated 0 (0%) 2 (<0.1%) 2 (<0.1%)  
Propel cannulated int. screw 188 (1.6%) 33 (0.3%) 221 (0.9%)  
RCI screw 431 (3.8%) 316 (2.4%) 747 (3.0%)  
RCI Screw 11 (<0.1%) 7 (<0.1%) 18 (<0.1%)  
Rigidfix 508 (4.4%) 100 (0.8%) 608 (2.5%)  
Rigidfix BTB cross-pin 205 (1.8%) 182 (1.4%) 387 (1.6%)  
Rigidfix BTB cross pin 0 (0%) 2 (<0.1%) 2 (<0.1%)  
Rigidfix ST cross pin Kit 3 (<0.1%) 0 (0%) 3 (<0.1%)  
Sheated Cannulated Interference Screw 6 (<0.1%) 14 (0.1%) 20 (<0.1%)  
Soft screw 12 (0.1%) 3 (<0.1%) 15 (<0.1%)  
Soft Screw 10 (<0.1%) 16 (0.1%) 26 (0.1%)  
SoftSilk 1615 (14%) 1828 (14%) 3443 (14%)  
TendonSoft 0 (0%) 1 (<0.1%) 1 (<0.1%)  
Tightrope ABS 18 (0.2%) 18 (0.1%) 36 (0.1%)  
ToggleLoc 144 (1.3%) 591 (4.5%) 735 (3.0%)  
Transfix II 852 (7.4%) 256 (1.9%) 1108 (4.5%)  
TunneLoc 462 (4.0%) 469 (3.6%) 931 (3.8%)  
UltraButton 0 (0%) 1 (<0.1%) 1 (<0.1%)  
Universal Wedge 212 (1.9%) 433 (3.3%) 645 (2.6%)  
Missing 207 103 310  

Tibia fixation device    <0.001 
ACL TightRope 5 (<0.1%) 4 (<0.1%) 9 (<0.1%)  
Aesculap Position ACL 15 (0.1%) 25 (0.2%) 40 (0.2%)  
AO Screw 2 (<0.1%) 0 (0%) 2 (<0.1%)  
Bio-Intrafix Screw 1 (<0.1%) 1 (<0.1%) 2 (<0.1%)  
Bio Composite Interference Screw 1 (<0.1%) 5 (<0.1%) 6 (<0.1%)  
Bio Intrafix 371 (3.2%) 351 (2.7%) 722 (2.9%)  
BioComposite SwiveLock C 22 (0.2%) 2 (<0.1%) 24 (<0.1%)  
Biodegr screw 675 (5.9%) 712 (5.4%) 1387 (5.6%)  
BioRCI 183 (1.6%) 486 (3.7%) 669 (2.7%)  
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BioRCI-HA 5 (<0.1%) 9 (<0.1%) 14 (<0.1%)  
BIORCI Screw 1 (<0.1%) 3 (<0.1%) 4 (<0.1%)  
Biosure HA 294 (2.6%) 1768 (13%) 2062 (8.4%)  
Biosure HA Interference screw 23 (0.2%) 32 (0.2%) 55 (0.2%)  
Biosure PK 47 (0.4%) 119 (0.9%) 166 (0.7%)  
BioTenodesis Screw System 0 (0%) 1 (<0.1%) 1 (<0.1%)  
BTB TightRope 2 (<0.1%) 1 (<0.1%) 3 (<0.1%)  
Comp non-degr 445 (3.9%) 813 (6.2%) 1258 (5.1%)  
ComposiTCP 60 0 (0%) 4 (<0.1%) 4 (<0.1%)  
Cortical button 0 (0%) 2 (<0.1%) 2 (<0.1%)  
Cramp 1 (<0.1%) 0 (0%) 1 (<0.1%)  
Delta Tapered Bio-Interference screw 1 (<0.1%) 0 (0%) 1 (<0.1%)  
Endobutton 14 (0.1%) 44 (0.3%) 58 (0.2%)  
Endobutton CL BTB 6 (<0.1%) 4 (<0.1%) 10 (<0.1%)  
Full Thread Interference screw 2 (<0.1%) 1 (<0.1%) 3 (<0.1%)  
Intrafix 954 (8.3%) 696 (5.3%) 1650 (6.7%)  
Intrafix Screw 1 (<0.1%) 1 (<0.1%) 2 (<0.1%)  
Linvatec Cannulated 2 (<0.1%) 1 (<0.1%) 3 (<0.1%)  
Low Profile Cancelless 4 (<0.1%) 12 (<0.1%) 16 (<0.1%)  
Metal int screw 733 (6.4%) 875 (6.7%) 1608 (6.5%)  
Milagro 0 (0%) 1 (<0.1%) 1 (<0.1%)  
Other suspension devices/cortical 16 (0.1%) 14 (0.1%) 30 (0.1%)  
Other Suspension devices/cortical 114 (1.0%) 168 (1.3%) 282 (1.1%)  
Other transtibial devices 2 (<0.1%) 0 (0%) 2 (<0.1%)  
Peek Interference Screw 14 (0.1%) 11 (<0.1%) 25 (0.1%)  
Profile interference screw 83 (0.7%) 333 (2.5%) 416 (1.7%)  
Profile Interference Screw 0 (0%) 1 (<0.1%) 1 (<0.1%)  
Propel Cannulated 1 (<0.1%) 2 (<0.1%) 3 (<0.1%)  
Propel cannulated int. screw 516 (4.5%) 461 (3.5%) 977 (4.0%)  
RCI screw 2355 (21%) 2050 (16%) 4405 (18%)  
RCI Screw 48 (0.4%) 44 (0.3%) 92 (0.4%)  
Rigidfix 1 (<0.1%) 0 (0%) 1 (<0.1%)  
Rigidfix BTB cross-pin 7 (<0.1%) 6 (<0.1%) 13 (<0.1%)  
Sheated Cannulated Interference Screw 1 (<0.1%) 1 (<0.1%) 2 (<0.1%)  
Soft screw 523 (4.6%) 395 (3.0%) 918 (3.7%)  
Soft Screw 13 (0.1%) 19 (0.1%) 32 (0.1%)  
SoftSilk 1948 (17%) 2232 (17%) 4180 (17%)  
SoftSilk 2 0 (0%) 1 (<0.1%) 1 (<0.1%)  
Staple 56 (0.5%) 53 (0.4%) 109 (0.4%)  
Suture washer star. Box of 1 1 (<0.1%) 4 (<0.1%) 5 (<0.1%)  
TendonSoft 0 (0%) 1 (<0.1%) 1 (<0.1%)  
Tightrope ABS 7 (<0.1%) 7 (<0.1%) 14 (<0.1%)  
TunneLoc 456 (4.0%) 477 (3.6%) 933 (3.8%)  
Universal Wedge 62 (0.5%) 415 (3.2%) 477 (1.9%)  
WasherLoc 1395 (12%) 473 (3.6%) 1868 (7.6%)  
WasherLoc Screw 5 (<0.1%) 0 (0%) 5 (<0.1%)  
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Missing 229 131 360  
Fixation device combination    <0.001 

Bone Mulch/Intrafix 103 (0.9%) 118 (0.9%) 221 (0.9%)  
Bone Mulch/WasherLoc 376 (3.2%) 16 (0.1%) 392 (1.6%)  
Endobutton/Biodegr. int. screw 87 (0.7%) 292 (2.2%) 379 (1.5%)  
Endobutton/BioIntrafix 92 (0.8%) 204 (1.5%) 296 (1.2%)  
Endobutton/BioRCI 159 (1.4%) 453 (3.4%) 612 (2.5%)  
Endobutton/Biosure HA 283 (2.4%) 1722 (13%) 2005 (8.0%)  
Endobutton/Comp non-degr. 171 (1.5%) 324 (2.4%) 495 (2.0%)  
Endobutton/Intrafix 488 (4.2%) 400 (3.0%) 888 (3.6%)  
Endobutton/Met. int. screw 91 (0.8%) 172 (1.3%) 263 (1.1%)  
Endobutton/RCI 1791 (15%) 1606 (12%) 3397 (14%)  
EzLoc/WasherLoc 1004 (8.6%) 437 (3.3%) 1441 (5.8%)  
Metal int screw x 2 336 (2.9%) 523 (3.9%) 859 (3.4%)  
Other combination 3024 (26%) 3646 (27%) 6670 (27%)  
RCI/RCI 284 (2.4%) 279 (2.1%) 563 (2.3%)  
RCI/Softsilk 138 (1.2%) 23 (0.2%) 161 (0.6%)  
Rigidfix BTB/Met. int. screw 77 (0.7%) 52 (0.4%) 129 (0.5%)  
Rigidfix BTB/Prop. cannulated screw 119 (1.0%) 127 (1.0%) 246 (1.0%)  
Rigidfix/Bio-Intrafix 173 (1.5%) 22 (0.2%) 195 (0.8%)  
Rigidfix/Intrafix 285 (2.4%) 76 (0.6%) 361 (1.4%)  
Softsilk x 2 1415 (12%) 1586 (12%) 3001 (12%)  
Softsilk/RCI 98 (0.8%) 90 (0.7%) 188 (0.8%)  
ToggleLoc/Bio-screw 55 (0.5%) 209 (1.6%) 264 (1.1%)  
Transfix/Biodegr int. screw 249 (2.1%) 24 (0.2%) 273 (1.1%)  
Transfix/Metal int. screw incl RCI 101 (0.9%) 4 (<0.1%) 105 (0.4%)  
TunneLoc/TunneLoc 445 (3.8%) 447 (3.4%) 892 (3.6%)  
Universal Wedge x 2 62 (0.5%) 414 (3.1%) 476 (1.9%)  
Universal Wedge/Bio-screw 137 (1.2%) 6 (<0.1%) 143 (0.6%)  
Missing 20 0 20  

*Statistics presented: Mean (SD); n (%) 
**Statistical tests performed: t-test, chi-square test 
 
Supplementary Table 2a: Cox Lasso performance with imputation 

 
Training data imputed (predictions 

averaged) 
Training and test data imputed 

(predictions averaged) 

Year Concordance Calibration 
statistic P-value Concordance Calibration 

statistic P-value 

1 0.681 4.89 0.18 0.685 4.74 0.192 
2 0.679 10.21 0.017 0.681 17.87 < 0.001 
5 0.678 3.24 0.357 0.678 1.57 0.667 

 

Supplementary Table 2b: Random forest performance with imputation 
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Training data imputed Training and test data imputed 

Year Concordance Calibration 
statistic P-value Concordance Calibration 

statistic P-value 

1 0.683 1.9 0.593 0.69 1.76 0.624 
2 0.68 8.94 0.03 0.689 10.08 0.018 
5 0.677 2.96 0.399 0.69 3.64 0.303 

 

Supplementary Table 2c: Generalized additive model performance with imputation 

 
Training data imputed (predictions averaged) Training and test data imputed 

(predictions averaged) 

Year Concordance Calibration 
statistic P-value Concordance Calibration 

statistic P-value 

1 0.686 4.93 0.177 0.689 9.32 0.025 
2 0.684 10.52 0.015 0.685 17.17 < 0.001 
5 0.682 5.3 0.151 0.682 4.78 0.189 

 

Supplementary Table 2d: Gradient boosted regression performance with imputation 

 
Training data imputed (predictions 

averaged) 
Training and test data imputed 

(predictions averaged) 

Year Concordance Calibration 
statistic P-value Concordance Calibration 

statistic P-value 

1 0.675 0.42 0.936 0.685 1.37 0.713 
2 0.672 1.99 0.575 0.682 4.53 0.21 
5 0.668 4.22 0.239 0.681 11.67 0.009 

 

Supplementary Table 3a: Random forest restricted to Lasso-selected variables 

 Complete cases Training and test data imputed 

Year Concordance Calibration 
statistic P-value Concordance Calibration 

statistic P-value 

1 0.671 5.95 0.114 0.669 7.22 0.065 
2 0.673 38.28 < 0.001 0.669 12.29 0.006 
5 0.677 137.74 < 0.001 0.669 5.15 0.161 

 

Supplementary Table 3b: Gradient boosted regression restricted to Lasso-selected variables 

 Complete cases Training and test data imputed 
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Year Concordance Calibration 
statistic P-value Concordance Calibration 

statistic P-value 

1 0.683 2535.36 < 0.001 0.684 6.07 0.108 
2 0.683 5731.62 < 0.001 0.682 10.27 0.016 
5 0.685 10008.69 < 0.001 0.68 8.62 0.035 
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A B S T R A C T

Objectives: Accurate prediction of outcome following anterior cruciate ligament (ACL) reconstruction is chal-
lenging, and machine learning has the potential to improve our predictive capability. The purpose of this study
was to determine if machine learning analysis of the Norwegian Knee Ligament Register (NKLR) can (1) identify
the most important risk factors associated with subjective failure of ACL reconstruction and (2) develop a clin-
ically meaningful calculator for predicting the probability of subjective failure following ACL reconstruction.
Methods: Machine learning analysis was performed on the NKLR. All patients with 2-year follow-up data were
included. The primary outcome was the probability of subjective failure 2 years following primary surgery,
defined as a Knee Injury and Osteoarthritis Outcome Score (KOOS) Quality of Life (QoL) subscale score of <44.
Data were split randomly into training (75%) and test (25%) sets. Four models intended for this type of data were
tested: Lasso logistic regression, random forest, generalized additive model (GAM), and gradient boosted
regression (GBM). These four models represent a range of approaches to statistical details like variable selection
and model complexity. Model performance was assessed by calculating calibration and area under the curve
(AUC).
Results: Of the 20,818 patients who met the inclusion criteria, 11,630 (56%) completed the 2-year follow-up
KOOS QoL questionnaire. Of those with complete KOOS data, 22% reported subjective failure. The lasso logis-
tic regression, GBM, and GAM all demonstrated AUC in the moderate range (0.67–0.68), with the GAM per-
forming best (0.68; 95% CI 0.64–0.71). Lasso logistic regression, GBM, and the GAM were well-calibrated, while
the random forest showed evidence of mis-calibration. The GAM was selected to create an in-clinic calculator to
predict subjective failure risk at a patient-specific level (https://swastvedt.shinyapps.io/calculator_koosqol/).
Conclusion: Machine learning analysis of the NKLR can predict subjective failure risk following ACL reconstruction
with fair accuracy. This algorithm supports the creation of an easy-to-use in-clinic calculator for point-of-care risk
stratification. Clinicians can use this calculator to estimate subjective failure risk at a patient-specific level when
discussing outcome expectations preoperatively.
Level of evidence: Level-III Retrospective review of a prospective national register.
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What are the new findings?

" Machine learning analysis can be performed on a national knee
ligament register to predict the risk of subjective failure
following anterior cruciate ligament reconstruction
" An in-clinic calculator can guide clinical discussion and expec-
tations at a patient-specific level
" Variables for predicting subjective failure following anterior
cruciate ligament reconstruction are patient-related and non-
modifiable by the surgeon

Introduction

Anterior cruciate ligament (ACL) reconstruction is a common ortho-
paedic procedure aimed at restoring function and stability following
injury. Literature regarding the surgical outcome is often reported in
relation to patient-reported outcome measures (PROM), and several risk
factors for a poor outcome have been suggested [1–4]. Currently, how-
ever, the ability to use these predictors at the time of surgery to accu-
rately predict which patients are at risk of experiencing a poor outcome is
poor [1].

Recently, there has been an increased focus on the use of artificial
intelligence and machine learning to improve predictive capability
within several fields of medicine, including orthopaedic surgery [5–9].
These advanced statistical techniques utilise computer algorithms to
model complex interactions between variables and may lead to
improved capacity to predict the outcome. The “advanced” nature of
these techniques is derived from the fact that the interactions can be
more complex than with traditional statistics. Machine learning
analyses can consider all possible interactions between variables in a
database and determine the relationships to the desired outcome
measure. The factors important for predicting outcomes can then be
identified and used to develop the predictive algorithm. Often, minimal
explicit and direct human computer programming is required, and
the resulting algorithms can be used to prospectively predict the
patient-specific outcome.

The Norwegian Knee Ligament Register (NKLR) has been prospec-
tively collecting demographic, injury, surgical, and outcome data since
2004. It now includes over 25,000 patients who have undergone ACL
reconstruction with high compliance across the country [10]. Several
studies that have improved our understanding of ACL injuries have been
based on the NKLR [11–14], andmachine learning analysis allows deeper
evaluation of factors associated with outcome [9]. There are currently no
machine learning models to predict subjective outcomes following pri-
mary ACL reconstruction, and the development of such a tool could
impact clinical practice by informing shared decision-making and
outcome expectations.

The purpose of this study was to use machine learning analysis of
the NKLR to (1) identify the most important risk factors associated
with subjective failure of primary ACL reconstruction and (2) develop
a clinically meaningful model for predicting subjective failure of pri-
mary ACL reconstruction. Subjective failure was defined as a Knee
Injury and Osteoarthritis Outcome Score (KOOS) Quality of Life (QoL)
subscale score of <44. This endpoint has been clinically validated as a
marker of failure following ACL reconstruction [11]. The hypothesis
was that machine learning analysis would facilitate accurate predic-
tion of subjective failure for a patient undergoing primary ACL
reconstruction.

Materials and methods

This manuscript was written in accordance with the Transparent
Reporting of a multivariable prediction model for Individual Prognosis
Or Diagnosis statement [15].

Data source

The NKLR is a nationwide register aiming to collect all reconstructive
surgery on cruciate ligament injuries in Norway. Reporting has been
mandatory since 2017, and the compliance of reporting to the register
was 86% in 2017 to 2018 [10]. The patients are registered with their
personal social security number, which allows them to be followed in
case of later surgery independent of service provider. Patient-specific and
intraoperative data are submitted to the NKLR by the surgeons (through
an article or web-based form directly after surgery). The patients are to
report KOOS preoperatively and at 2, 5, and 10 years of follow-up.

Ethics

Informed consent is obtained from all patients at time of enrolment in
the NKLR. Based on this consent, the Norwegian Data Inspectorate pro-
vides permission for the NKLR to collect, analyse, and publish on health
data. The registration of data was performed confidentially and accord-
ing to Norwegian and European Union data protection rules, with all data
de-identified prior to retrieval from the NKLR. The Regional Ethics
Committee has previously determined that it is not necessary to obtain
further ethical approval for Norwegian register-based studies [16].

Data preparation

This level-III retrospective review of a prospective national register
included all patients contained within the NKLR with primary ACL
reconstruction surgery dates from January 2004 through December
2018. Those with values for graft choice recorded as “direct suture,”
“other,” or missing were excluded. Patients with other ligamentous in-
juries at the time of primary surgery or <2 years of follow-up were also
excluded. Variables considered in the analysis are presented in Table 1.
Variables were re-coded or newly defined for the following: years be-
tween injury and primary surgery; cartilage injury identified at surgery
(none, ICRS 1–2, ICRS 3–4); meniscus injury identified at surgery (yes/
no); graft choice (patellar tendon autograft, hamstring tendon autograft,
other); fixation choice (interference screw, suspension/cortical device,
other); and height and weight variables that combined data from the
patient- and surgeon-reported variables. A predictor indicating if a pa-
tient was below the median score in all five KOOS categories at the time
of primary surgery was also created, and predictors for KOOS QoL and
Sports measures were scaled to a score out of 10.

Model creation

The primary outcome was the probability of subjective failure at 2
years following primary ACL reconstruction, as defined as a KOOS QoL
score of <44. Cleaned data were randomly split into training (75%) and
test (25%) sets that were used to fit and evaluate the models, respec-
tively. The program R (version: 3.6.1, R Core Team 2019) was used to fit
four machine learning models to the training data: lasso logistic regres-
sion, random forest, gradient boosted regression model (GBM), and
generalized additive model (GAM) [17]. These four models are among
the most commonly used for machine learning classification tasks and
offer a range of approaches in terms of variable selection, optimisation
technique, and complexity. Lasso logistic regression is a parametric,
penalised regression model that selects a subset of variables for inclusion
[18]. The random forest is a tree-based, nonparametric method [19].
GBMs are also nonparametric, meaning that they do not require
pre-specification of a model structure and iteratively improve the model
fit using all available variables [20,21]. GAM allow for machine-selected
nonlinear relationships among a pre-specified group of variables [22].
Further description of each of the four machine learning models can be
found in Appendix A.

An L1-regularised logistic regression model (“lasso logistic regres-
sion,” package glmnet; lambda value selected via cross-validation) was
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applied to select variables for each outcome, and those with non-zero
coefficients were retained (Fig. 1). Random forests (function random-
Forest from package randomForest) were trained for each outcome with
minimum node size 5, 10 variables tried per split, 500 trees, and the full
set of predictors (hyperparameters selected via cross-validation). GAMs
(function gam from package mgcv) were trained with those variables
selected in the lasso for the respective outcomes, using smooth terms for
all continuous variables selected. Finally, GBMs (function gbm from
package gbm) were trained using a shrinkage parameter of 0.01,

minimum node size of 10, maximum tree depth of 3, 1000 trees, and the
full set of predictors (hyperparameters selected via cross-validation). All
four models were restricted to patients with complete data for the pre-
dictors used (Table 2a and Table 2b).

Model evaluation

Model performance was evaluated by calculating predicted proba-
bilities of subjective failure at 2 years of follow-up for the hold-out test
data using the trained models. Model calibration was assessed using the
Hosmer–Lemeshow statistic (function hoslem.test in package ResourceSe-
lection) [23]. Calibration refers to the accuracy of the predicted proba-
bilities, comparing expected to actual observed outcomes. This statistic
sums average misclassification in each predicted risk quintile and con-
verts the sum into a chi-squared statistic. Larger calibration statistics
correspond to smaller p values, and statistical significance means that the
null hypothesis of perfect calibration is rejected. The area under the
curve (AUC) was also calculated for each model along with confidence
intervals for the AUC using bootstrap resampling (functions auc and
ci.auc from package pROC).

Missing data

An inverse probability-weighted analysis was conducted to assess
whether patients with complete follow-up KOOS QoL score data were
fundamentally different from those with missing outcome data based on
observed characteristics. Inverse probability weighting assigns each
observation a weight based on the inverse of the probability of a patient
with similar observed characteristics being present in the dataset. In this
case, patients with combinations of predictor variables that are rare in the
complete outcome dataset receive high weights. Conversely, patients with
common predictor variables are down-weighted to adjust for their over-
representation. The result of the weighting is a population that mimics
what would have occurred if all patients were to have complete outcome
data. The same models are then built on this weighted population and
compared to the unweighted analysis. If the weighted models show sub-
stantively different results, this indicates that there may be fundamental
differences between patients with complete and incomplete outcome data.
If there is no substantive difference, this indicates that removing patients
with incomplete outcome data does not jeopardise the results.

To assess the effect of excluding patients with missing predictor
values from the models, the same four models were trained using mul-
tiple imputations to fill in missing values in the training data (function
mice from package mice). As with the weighted models, if there is no
substantive difference when using imputation, this indicates that
removing patients with incomplete predictor data does not adversely
affect the results.

Sources of funding

This study was funded by a Norwegian Centennial Chair seed grant.
Funding supported the machine learning analysis and interpretation. The
funding agencies had no direct role in the investigation.

Results

Data characteristics

Table 1 describes the characteristics of the registered population at
the time of primary surgery and the variables included for analysis. After
data cleaning, 20,818 patients met the inclusion criteria (Fig. 2). Of these
patients, 11,630 (56%) had complete 2-year follow-up KOOS QoL data.
Subjective failure (KOOS QoL score <44) occurred in 2,556 (22%) of the
patients with complete outcome data. The population was approximately
evenly split between male and female, with an average age (and standard
deviation) of 29 # 11 years at the time of primary surgery.

Table 1
Characteristics of patients.

Variablea All N ¼ 20,818 Complete 2-year
Outcome Data
N ¼ 11,630

Follow-up time or time to revision 7.3 (3.9) 7.9 (3.6)
KOOS QOL <44 at 2 years 2,556 (22%) 2,556 (22%)
Missing 9,188 0

Age at surgery 28 (10) 29 (11)
Age at injury 26 (10) 27 (11)
Missing 1072 544

Sex
Male 11,669 (56%) 5,836 (50%)
Female 9,149 (44%) 5,794 (50%)

Pre-surgery BMI 25.0 (3.7) 24.8 (3.7)
Missing 7,244 4,365

Pre-surgery KOOS QOL
score (out of 10)

3.50 (1.83) 3.52 (1.83)

Missing 4,022 2,008
Pre-surgery KOOS Sports
score (out of 10)

4.33 (2.71) 4.37 (2.69)

Missing 4,162 2,087
Below median on all
pre-surgery KOOS

3,285 (19%) 1,806 (19%)

Missing 3,893 1,942
Activity that led to injury
Non-pivoting 4,109 (25%) 2,392 (26%)
Pivoting 12,007 (75%) 6,716 (74%)
Other/Unknown 0 (0%) 0 (0%)
Missing 4,702 2,522

Meniscus injury 10,942 (53%) 5,927 (51%)
Cartilage injury
ICRS 1-2 3,625 (17%) 2,016 (17%)
ICRS 3-4 993 (4.8%) 577 (5.0%)
None 16,200 (78%) 9,037 (78%)

Graft choice
BPTB autograft 7,334 (35%) 3,782 (33%)
Hamstring autograft 13,197 (63%) 7,740 (67%)
Other 287 (1.4%) 108 (0.9%)

Tibia fixation device
Interference screw 17,893 (89%) 9,905 (88%)
Suspension/cortical device 2,073 (10%) 1,245 (11%)
Other 152 (0.8%) 88 (0.8%)
Missing 700 392

Femur fixation device
Interference screw 6,325 (31%) 3,314 (29%)
Suspension/cortical device 11,629 (57%) 6,613 (58%)
Other 2,484 (12%) 1,491 (13%)
Missing 380 212

Fixation device combination
Interference screw x2 6,028 (30%) 3,163 (28%)
Interference/suspension 51 (0.3%) 17 (0.2%)
Suspension/cortical device x2 1,646 (8.2%) 1,011 (9.0%)
Suspension/interference 9,635 (48%) 5,410 (48%)
Other 2,634 (13%) 1,577 (14%)
Missing 824 452

Injured side
Right 10,613 (51%) 5,871 (50%)
Left 10,205 (49%) 5,759 (50%)

Previous surgery on opposite knee 1,526 (7.3%) 786 (6.8%)
Previous surgery on same knee 3,784 (18%) 2,220 (19%)
Time injury to surgery (years) 1.71 (3.36) 1.81 (3.63)
Missing 1,076 546

Systemic Antibiotic Prophylaxis 20,669 (100%) 11,534 (99%)
Missing 51 34

a Statistics presented: Mean (SD); n (%).
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Fig. 1. Variable Importance. The four plots show relative feature importance in each of the machine learning models. The vertical axis is a variable importance score,
which differs depending on the model. For the lasso logistic regression and GAM, the vertical axis is the absolute value of the variable coefficient (effect size). For the
random forest and GBM, the scale is the decrease in model error rate if the variable were to be removed from the model. The highlighted bars indicate variables that
were selected using the lasso and included in the final model used for the in-clinic calculator. GAM, generalized additive model; GBM, gradient boosted regres-
sion model.
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To assess the impact of restricting the analysis to patients with
complete KOOS QoL score data, covariate distributions between patients
with complete outcomes and the full dataset were compared (Table 1).
Covariate distributions between the complete cases for each model and
the full dataset were also compared (Table 2a and Table 2b). Due to the
large sample sizes, some comparisons produce p values below the sig-
nificance threshold: those with complete data were newer to the register,
had their surgeries at higher-volume hospitals, and were more likely to
be female. However, these differences were in general small and of
limited clinical significance. An inverse-probability-weighted analysis
and an analysis imputing missing covariate data was also performed.
Neither alternative analysis showed meaningfully different results from
the complete case models (Table 3 and Table 4).

Model performance

The lasso logistic regression, GBM, and GAM all demonstrated AUC in
the moderate range (0.67–0.68), with the GAM performing best at 0.68
(95% CI 0.64–0.71). Lasso logistic regression, gradient boosted regres-
sion, and the GAM were well-calibrated, and the random forest showed
evidence of miscalibration (Table 5).

Factors predicting outcome

The most important predictors of subjective failure at 2 years
following primary surgery in the lasso logistic regression model in order
were below the median on all KOOS subscale scores at the time of sur-
gery, cartilage injury at the time of surgery, activity leading to injury,
previous surgery on the same knee, KOOS Sports and QoL scores at
surgery, body mass index (BMI) at surgery, and age at injury. In the
random forest, predictors in the top third by variable importance score
also included age at surgery, graft choice, years between injury and
surgery, fixation device combination, and femur fixation. The GAM and
GBM produced similar rankings of feature importance (Fig. 1). The lasso
logistic regression and GAM measure feature importance by effect size
associated with the variable. The other models use the difference in
model error rate where the feature is to be removed.

Risk-prediction calculator

The GAM was selected to create an easy-to-use in-clinic calculator to
predict the risk of a patient experiencing a subjective failure at 2 years of
follow-up after primary ACL reconstruction (https://swastvedt.shinya
pps.io/calculator_koosqol/and Fig. 3). The GAM was chosen out of the
four models because it combines performance with simplicity, using
fewer predictor variables than the similarly performing GBM. Whereas
the overall risk of failure in the register was 22%, this calculator can
quantify the risk at a patient-specific level (Video 1).

Discussion

The most important finding of this study was that machine learning
analysis of a knee ligament register allows the creation of a validated
algorithm to predict a patient's risk of experiencing subjective failure
of ACL reconstruction with fair accuracy. Additionally, despite having
20 possible prognostic variables contained within the NKLR, the al-
gorithm required only eight factors for the prediction of 2-year risk.
Variables required for risk prediction include age at injury, pre-
operative KOOS subscale scores, activity leading to an ACL injury,
concomitant cartilage injury, history of previous surgery on the same
knee, and pre-operative BMI. Using this algorithm, we developed an
in-clinic calculator was developed that can estimate the risk of sub-
jective failure.

This represents the first machine learning model for predicting the
subjective outcome of ACL reconstruction at a patient-specific level.
Estimation of revision risk has been developed previously [9], and
together, these two prediction tools can be used to guide the discussion
surrounding the surgical options and realistic outcome goals at a
patient-specific level. For the clinician, this represents a valuable adjunct
to the assessment of patients with ACL deficiency desiring surgical
management.

Similar to the previous study of revision risk [9], four models were
used to analyse the NKLR and create algorithms predicting the risk of
subjective failure after ACL reconstruction. Discrimination (AUC) was
similar for the prediction of subjective outcome evaluated with this study

Table 2a
Lasso logistic regression/generalised additive model complete/incomplete case comparison.

Variable* Incomplete
N ¼ 14,810

Complete
N ¼ 6,008

Total
N ¼ 20,818

P-value**

Years: surgery to data current date (2020-01-12) 9.1 (4.2) 7.6 (2.5) 8.6 (3.9) <0.001
KOOS QoL <44 at 2 years 1,270 (23%) 1,286 (21%) 2,556 (22%) 0.13
Missing 9,188 0 9,188

Age at injury 26 (10) 27 (11) 26 (10) 0.006
Missing 1,072 0 1,072

Pre-surgery BMI 25.1 (3.7) 24.8 (3.7) 25.0 (3.7) <0.001
Missing 7,244 0 7,244

Pre-surgery KOOS QoL score (out of 10) 3.48 (1.83) 3.55 (1.85) 3.50 (1.83) 0.016
Missing 4,022 0 4,022

Pre-surgery KOOS Sports score (out of 10) 4.29 (2.71) 4.42 (2.70) 4.33 (2.71) 0.002
Missing 4,162 0 4,162

Below median on all pre-surgery KOOS scores 2,199 (20%) 1,086 (18%) 3,285 (19%) 0.001
Missing 3,893 0 3,893

Activity that led to injury <0.001
Non-pivoting 2,784 (19%) 1,325 (22%) 4,109 (20%)
Pivoting 8,433 (59%) 3,574 (59%) 12,007 (59%)
Other 3,122 (22%) 1,109 (18%) 4,231 (21%)
Missing 471 0 471

Cartilage injury 0.015
ICRS 1-2 2,648 (18%) 977 (16%) 3,625 (17%)
ICRS 3-4 692 (4.7%) 301 (5.0%) 993 (4.8%)
None 11,470 (77%) 4,730 (79%) 16,200 (78%)

Previous surgery on same knee 2,824 (19%) 960 (16%) 3,784 (18%) <0.001

*Statistics presented: Mean (SD); n (%).
**Statistical tests performed: t-test, chi-square test.
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(0.65–0.68) compared with the revision risk prediction (0.67–0.69), and
all models except the random forest demonstrated appropriate calibra-
tion. It is interesting to note that while the factors used for predicting
revision risk included modifiable surgical details (graft choice, femoral
fixation device, and length of time between injury and surgery) [9], the
prediction of subjective failure appears to be static. That is, most of the
variables used to predict subjective outcome are based on patient-driven
factors that are present prior to surgery (age, concomitant chondral
injury, history of previous surgery, and activity leading to injury) and
may not be amenable to optimisation.

Of the variables identified by the algorithm as important for pre-
dicting the risk of subjective failure, the only truly modifiable factor was
patient BMI at the time of surgery. The extent to which efforts to decrease
BMI prior to surgery may influence the risk of poor functional outcomes
is unclear and raises an interesting area for future study. Similarly, given
the impact of the pre-surgical KOOS scores on the eventual post-operative
subjective outcome, efforts to optimise functional outcomes prior to
surgery through physiotherapy or cognitive behavioural coaching may
also be beneficial. Regarding variable relative importance (Fig. 1), BMI
was the least important variable in the GAM, while KOOS QoL had the

Table 2b
Random forest/gradient boosted regression complete/incomplete case comparison.

Variable* Incomplete
N ¼ 15,040

Complete
N ¼ 5,778

Total
N ¼ 20,818

P-value**

Years: surgery to data current date (2020-01-12) 9.0 (4.2) 7.5 (2.5) 8.6 (3.9) <0.001
KOOS QoL <44 at 2 years 1,329 (23%) 1,227 (21%) 2,556 (22%) 0.058
Missing 9,188 0 9,188

Age at surgery 28 (10) 28 (11) 28 (10) 0.19
Age at injury 26 (10) 27 (11) 26 (10) 0.006
Missing 1,072 0 1,072

Sex <0.001
Male 8,890 (59%) 2,779 (48%) 11,669 (56%)
Female 6,150 (41%) 2,999 (52%) 9,149 (44%)

Pre-surgery BMI 25.1 (3.7) 24.8 (3.7) 25.0 (3.7) <0.001
Missing 7,244 0 7,244

Pre-surgery KOOS QoL score (out of 10) 3.48 (1.82) 3.56 (1.85) 3.50 (1.83) 0.006
Missing 4,022 0 4,022

Pre-surgery KOOS Sports score (out of 10) 4.28 (2.71) 4.43 (2.71) 4.33 (2.71) 0.001
Missing 4,162 0 4,162

Below median on all pre-surgery KOOS scores 2,244 (20%) 1,041 (18%) 3,285 (19%) 0.001
Missing 3,893 0 3,893

Activity that led to injury <0.001
Non-pivoting 2,846 (20%) 1,263 (22%) 4,109 (20%)
Pivoting 8,564 (59%) 3,443 (60%) 12,007 (59%)
Other 3,159 (22%) 1,072 (19%) 4,231 (21%)
Missing 471 0 471

Meniscus injury 7,908 (53%) 3,034 (53%) 10,942 (53%) 0.940
Cartilage injury 0.031
ICRS 1-2 2,683 (18%) 942 (16%) 3,625 (17%)
ICRS 3-4 710 (4.7%) 283 (4.9%) 993 (4.8%)
None 11,647 (77%) 4,553 (79%) 16,200 (78%)

Graft choice <0.001
BPTB autograft 5,454 (36%) 1,880 (33%) 7,334 (35%)
Hamstring autograft 9,358 (62%) 3,839 (66%) 13,197 (63%)
Other 228 (1.5%) 59 (1.0%) 287 (1.4%)

Tibia fixation device <0.001
Interference screw 12,494 (87%) 5,399 (93%) 17,893 (89%)
Suspension/cortical device 1,700 (12%) 373 (6.5%) 2,073 (10%)
Other 146 (1.0%) 6 (0.1%) 152 (0.8%)
Missing 700 0 700

Femur fixation device <0.001
Interference screw 4,671 (32%) 1,654 (29%) 6,325 (31%)
Suspension/cortical device 7,817 (53%) 3,812 (66%) 11,629 (57%)
Other 2,172 (15%) 312 (5.4%) 2,484 (12%)
Missing 380 0 380

Fixation device combination <0.001
Interference screw x2 4,391 (31%) 1,637 (28%) 6,028 (30%)
Interference/suspension 40 (0.3%) 11 (0.2%) 51 (0.3%)
Suspension/interference 6,177 (43%) 3,458 (60%) 9,635 (48%)
Suspension/cortical device x2 1,292 (9.1%) 354 (6.1%) 1,646 (8.2%)
Other 2,316 (16%) 318 (5.5%) 2,634 (13%)
Missing 824 0 824

Injured side 0.18
Right 7,711 (51%) 2,902 (50%) 10,613 (51%)
Left 7,329 (49%) 2,876 (50%) 10,205 (49%)

Previous surgery on opposite knee 1,157 (7.7%) 369 (6.4%) 1,526 (7.3%) 0.001
Previous surgery on same knee 2,856 (19%) 928 (16%) 3,784 (18%) <0.001
Time injury to surgery (years) 1.72 (3.31) 1.68 (3.50) 1.71 (3.36) 0.42
Missing 1,076 0 1,076

Systemic antibiotic prophylaxis 14,897 (99%) 5,772 (100%) 20,669 (100%) <0.001
Missing 51 0 51

*Statistics presented: Mean (SD); n (%).
**Statistical tests performed: t-test, chi-square test.
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highest relative importance. It should be noted, however, that the present
study was designed to predict subjective failure risk and does not
represent a comparative study to determine the effect of risk factor
modification.

The primary outcome of the subjective failure of ACL reconstruction
was defined as a KOOS QoL score of <44. Other possible measures of
subjective outcome include, but are not limited to, the minimal clinically
important difference (MCID) or Patient Acceptable Symptom State and
may use other assessment tools such as a visual analogue scale or the
International Knee Documentation Committee questionnaire. While
there are advantages and disadvantages to each measure of functional
outcome, KOOS QoL was selected for this study since it has previously
been validated as a measure of inadequate knee function associated with
prospective ACL reconstructed graft failure and represents a poor
outcome after surgery [11]. Further, the prevalence of a KOOS QoL score
of <44 was 22%, which suggests that the outcome is clinically relevant
across the population.

Table 3
Inverse probability weighted model performance.

Model AUC Weighted
calibration
statistic

Unweighted
calibration

Calibration
p-value
(unweighted)

Logistic regression (lasso) 0.67 0.020 4.33 0.228
Random forest 0.65 0.054 24.65 <0.001
Gradient boosted regression 0.67 0.017 6.65 0.084
Generalised additive model 0.67 0.019 7.45 0.059

Table 4
Multiple imputation model performance.

Model AUC Calibration statistic Calibration p-value

Logistic regression (lasso) 0.68 2.54 0.468
Random forest 0.67 21.30 0.006
Gradient boosted regression 0.69 1.62 0.656
Generalised additive model 0.68 2.46 0.482

Table 5
Model performance.

Model AUC AUC confidence
interval

Calibration
statistic

Calibration p-
value

Logistic regression
(lasso)

0.67 (0.64, 0.71) 4.57 0.206

Random forest 0.65 (0.62, 0.69) 26.83 <0.001
Gradient boosted
regression

0.68 (0.64, 0.71) 4.03 0.258

Generalised
additive model

0.68 (0.64, 0.71) 4.74 0.192

Fig. 3. QR Code for 2-year subjective failure point-of-care risk stratification at
the time of primary ACL reconstruction. ACL, anterior cruciate ligament.

Fig. 2. Patient inclusion flowchart.

R.K. Martin et al. Journal of ISAKOS 7 (2022) 1–9

7



Limitations

The most significant limitation of this study is the missing follow-up
KOOS data. Whereas overall compliance with the NKLR is 86% for
tracking revision surgery following ACL reconstruction [10], follow-up
KOOS scores were only available for 56% of patients at 2 years. While
we cannot determine that data were missing completely at random, the
inverse probability weighted analysis does provide evidence that the
group of patients with complete KOOS follow-up data was not mean-
ingfully different from the group with missing data based on recorded
characteristics. Complete PROM follow-up represents a challenge for all
national knee ligament registers since patients are typically young and
reside throughout the country. Patient compliance is typically higher
when research teams and surgeons are actively engaged in the data
collection [2], which is not feasible for a large national register like the
NKLR. Second, although several machine learning models were evalu-
ated, a model that not considered may have performed better. A third
limitation is the fact that the analysis was limited to the variables con-
tained within the register. Although these variables included several
known risk factors for ACL reconstruction failure, there are also many
other factors that may be associated with the poor outcome that are not
recorded in the NKLR. Examples include radiographic variables such as
tibial slope and coronal alignment [24–28], physical examination and
rehabilitation details [29,30], and surgical technique factors such as
tunnel position [31] and graft size [32,33]. Further, while meniscus and
chondral injuries were recorded, the surgical treatments employed at the
time of surgery were not included as variables and may represent a
source of exclusion bias.

There are also limitations regarding the clinical utility of this
analysis. The machine learning models use several variables for
outcome prediction. To account for this, the GAM was selected for the
in-clinic calculator due to its simplicity, requiring fewer input vari-
ables without a significant decrease in performance versus the more
complex models. Further, this study included patients from a single
national register, and the results may not be applicable to other pop-
ulations. External validity could be established through the evaluation
of model performance when applied to patients from other registers or
databases. While an advantage of registers like the NKLR is the gen-
eralisability and real-world applicability [34], the inclusion of all
Norwegian surgeons in the data collection may result in wide vari-
ability. Finally, while the machine learning algorithm was well cali-
brated, the AUC was fair. The accuracy of the model may be improved
if radiographic, rehabilitation, and/or other variables not included in
the model were assessed.

Conclusion

Machine learning analysis of a national knee ligament register can
predict subjective failure risk following ACL reconstruction with few
factors required for outcome prediction and moderate accuracy overall.
This algorithm supports the creation of an easy-to-use in-clinic calculator
for point-of-care risk stratification. Clinicians can use this calculator to
estimate subjective failure risk at a patient-specific level when discussing
outcome expectations pre-operatively.
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Appendix A: Machine Learning Models 

Lasso logistic regression 

The Lasso logistic regression model applies Lasso (L1) regularization to a logistic regression 
model for binary outcomes. The method performs variable selection by applying a penalty during 
model fitting that sets less important predictor coefficients to zero. The remaining (non-zero) 
coefficients comprise the selected predictors. A tuning parameter controls the extent of this 
shrinkage: larger values of the tuning parameter correspond to more shrinkage and thus the 
selection of fewer predictors. We fit the Lasso using the glmnet package in R, with the tuning 
parameter selected via cross-validation to balance model simplicity and fit.1 

Random Forest 

The random forest, as implemented in the randomForest R package, uses an ensemble tree 
method designed for classification of binary outcome data. Each tree uses a bootstrap sample of 
the data, with variables randomly selected for splitting at each node in the tree. Estimates for an 
individual are averaged over all bootstrap samples for which the individual is out of bag (OOB). 
Prediction error for the forest is measured by the overall OOB error rate for all trees in the 
forest.2 

Generalized additive model 

A generalized additive model (GAM) is a regression model that allows for non-linear 
relationships between predictors and the outcome. In the R package mgcv, which we used for our 
model, smooth terms are fit using penalized regression splines. The generalized additive model 
fits a logistic regression model, suitable for binary data.3 

Gradient boosted regression 

Gradient boosting uses an iterative method to fit a regression function to the data. At each 
iteration, the gradient, or the derivative of the loss function with respect to the current regression 
function, is calculated. The regression function is then updated in the direction of this gradient, 
improving the fit. Gradient boosted regression as implemented in the R package gbm, which we 
used for our model, uses regression trees as the functions.4,5 
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Background: Clinical tools based on machine learning analysis now exist for outcome prediction after primary anterior cruciate
ligament reconstruction (ACLR). Relying partly on data volume, the general principle is that more data may lead to improved
model accuracy.

Purpose/Hypothesis: The purpose was to apply machine learning to a combined data set from the Norwegian and Danish knee
ligament registers (NKLR and DKRR, respectively), with the aim of producing an algorithm that can predict revision surgery with
improved accuracy relative to a previously published model developed using only the NKLR. The hypothesis was that the addi-
tional patient data would result in an algorithm that is more accurate.

Study Design: Cohort study; Level of evidence, 3.

Methods: Machine learning analysis was performed on combined data from the NKLR and DKRR. The primary outcome was the
probability of revision ACLR within 1, 2, and 5 years. Data were split randomly into training sets (75%) and test sets (25%). There
were 4 machine learning models examined: Cox lasso, random survival forest, gradient boosting, and super learner. Concordance
and calibration were calculated for all 4 models.

Results: The data set included 62,955 patients in which 5% underwent a revision surgical procedure with a mean follow-up of 7.6
6 4.5 years. The 3 nonparametric models (random survival forest, gradient boosting, and super learner) performed best, demon-
strating moderate concordance (0.67 [95% CI, 0.64-0.70]), and were well calibrated at 1 and 2 years. Model performance was
similar to that of the previously published model (NKLR-only model: concordance, 0.67-0.69; well calibrated).

Conclusion: Machine learning analysis of the combined NKLR and DKRR enabled prediction of the revision ACLR risk with mod-
erate accuracy. However, the resulting algorithms were less user-friendly and did not demonstrate superior accuracy in compar-
ison with the previously developed model based on patients from the NKLR alone, despite the analysis of nearly 63,000 patients.
This ceiling effect suggests that simply adding more patients to current national knee ligament registers is unlikely to improve
predictive capability and may prompt future changes to increase variable inclusion.

Keywords: ACL revision; outcome prediction; machine learning; artificial intelligence

There has been an increased focus on outcome prediction
using machine learning in orthopaedic surgery recently.22

The primary goal of these early clinical predictive models
was to enable patient-specific risk estimation to guide
management discussions and expectations. Clinical tools
based on machine learning analysis now exist for outcome
prediction after anterior cruciate ligament reconstruction
(ACLR) including revision surgery30 and inferior patient-
reported outcomes.31 These models were developed from

analyses of the Norwegian Knee Ligament Register
(NKLR), and the revision prediction model has also been
externally validated using the Danish Knee Ligament
Reconstruction Registry (DKRR).32

The accurate prediction of outcomes after ACLR holds
value for both the patient and surgeon. However, with so
many interrelated variables contributing to the risk of
a poor outcome, it can be challenging for a clinician to
quantify that risk for the patient in the office, regardless
of his or her experience level. Machine learning represents
a novel approach to this problem and can facilitate patient-
specific risk quantification through the analysis and inter-
pretation of large volumes of data in ways that were previ-
ously unrealistic.

The American Journal of Sports Medicine
2023;51(9):2324–2332
DOI: 10.1177/03635465231177905
! 2023 The Author(s)

2324



Relying partly on data volume to develop predictive
algorithms, the general principle is that more data may
lead to improved model accuracy. The rationale for this is
that more data present more opportunity for the models
to ‘‘learn’’ the association between predictors and out-
comes. Therefore, the purpose of this study was to apply
machine learning to a combined NKLR and DKRR data
set, with the aim of predicting revision surgery with
improved accuracy relative to a previously published
model.30 The original NKLR model was developed using
machine learning analysis of approximately 25,000
patients, whereas the combined NKLR and DKRR data
set includes nearly 63,000 patients. The hypothesis was
that the additional patient data would result in a more
accurate prediction of the revision ACLR risk.

METHODS

This article was written in accordance with the Transpar-
ent Reporting of a multivariable prediction model for Indi-
vidual Prognosis Or Diagnosis statement.6 The statement
includes a 22-item checklist, with the goal of improving
the transparency of prediction model studies through full
and clear reporting.

Ethics

All patients provided informed consent for the NKLR, and
the Norwegian Data Protection Authority granted permis-
sion for the register to collect, analyze, and publish health
data. Data registration was performed confidentially
according to European Union data protection rules, with
all data de-identified before retrieval. The regional ethics
committee stated that it was not necessary to obtain fur-
ther ethical approval.11 Similarly, the DKRR obtained
informed consent at the time of enrollment, and patient
data were de-identified before retrieval with no further
ethical approval required.

Data Compilation

Patients who underwent primary ACLR between June
2004 and December 2020 were included. Patients missing

data for graft choice, those with a graft choice recorded
as ‘‘direct suture,’’ and those missing data for the indicator
of revision surgery were excluded. Variables considered for
analysis are shown in Table 1.

A predictor indicating if a patient scored below the
median score in the respective registry for all preoperative
Knee injury and Osteoarthritis Outcome Score (KOOS)
subscales was created. Patients who underwent revision
ACLR before the follow-up time were considered to have
experienced the event.

Machine Learning Modeling

NKLR and DKRR data were combined and then randomly
split into training (75%) and test (25%) sets used to fit and
evaluate the models, respectively. The primary outcome
was the probability of revision ACLR within 1, 2, and 5
years. R (Version 4.1.11; R Core Team) was used to fit
machine learning models that were adapted for censored
time-to-event data. ‘‘Censoring’’ refers to the fact that
patients who have not yet reached a given follow-up time
point may still contribute partial information toward that
endpoint. For example, a patient who has been revision-
free for 4 years has not yet reached the 5-year selected out-
come time point, but his or her revision-free time can still
be considered in the analysis for the 5-year revision risk.
Censoring also accounts for the fact that patients who
have not yet undergone a revision procedure may ulti-
mately undergo revision surgery in the future.

Four models intended for this type of data were used:
Cox lasso, random survival forest, gradient boosting, and
super learner. These models represent a range of
approaches regarding the flexibility of model fitting and
the number of variables incorporated. Cox lasso is a semi-
parametric, penalized regression model that selects a sub-
set of the most important predictor variables for
inclusion.41 Random survival forest is a nonparametric
model, meaning that it does not require prespecification
of a model structure, and uses all available variables;
this model is an adaptation of the widely used tree-based
random forest method for censored data.17 Gradient boost-
ing is also a tree-based, nonparametric model adapted for
censored data; this model iteratively updates to improve
the fit using all available variables.9 Super learner is an
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‘‘ensemble’’ model that creates a weighted average of other
machine learning techniques, combining them into 1 over-
all fit and thereby providing an even more flexible
approach46; the super learner model combines the random
survival forest and gradient boosting models. Further
descriptions of each model are included in the Appendix
(available in the online version of this article).

Variables with nonzero coefficients were selected using
the L1-regularized Cox model (‘‘Cox lasso’’; package
glmnet; lambda value selected via cross-validation), retain-
ing the variables shown in the top panel of Figure 1.

For the random survival forest, gradient boosting, and
super learner models, a grid search method was used to
determine hyperparameters (package MachineShop).
This method compares all combinations of a range of possi-
ble hyperparameter values and chooses the optimal combi-
nation based on a performance metric: in this case, the C-
index, described below. The random survival forest model
(package randomForestSRC) was trained using the follow-
ing hyperparameters: node size of 300, 10 variables per
split, and 500 trees. The gradient boosting model (package
gbm) was trained using a shrinkage parameter of 0.01,
interaction depth of 3, minimum node size of 100, and
1,000 trees. The super learner model was trained using
the same hyperparameter values for the random survival
forest and gradient boosting models and utilizing the
SuperModel function (package MachineShop) to deter-
mine, via cross-validation, the optimal weighting of the
component models. All 4 models were restricted to patients
with complete data for the predictors used (see Table 1 and
Missing Data section).

Model Evaluation

Model performance was evaluated by calculating survival
probabilities with each model for observations in the hold-
out test set. Concordance and calibration were then

TABLE 1
Patient and Surgical Characteristicsa

Value
(N = 62,955)

Revision 3205 (5)
Follow-up time or time to revision,

mean 6 SD, y
7.6 6 4.5

Age at surgery, median (IQR), y 26 (20-36)
Age at injury, median (IQR), y 24 (18-34)

Missing, n 1870
Sex

Male 36,509 (58)
Female 26,446 (42)

Preoperative KOOS–Quality of Life
score (of 10), mean 6 SD

3.63 6 1.80

Missing, n 29,512
Preoperative KOOS-Sport score

(of 10), mean 6 SD
4.12 6 2.69

Missing, n 29,708
All preoperative KOOS scores below median 6372 (19)

Missing, n 29,323
Activity that led to injury

Nonpivoting 20,391 (32)
Pivoting 35,851 (57)
Other 6162 (10)
Missing, n 551

Meniscal injury
Injury without repair 20,328 (32)
Injury with repair 10,554 (17)
None 32,061 (51)
Missing, n 12

Cartilage injury
Grade 1-2 8766 (14)
Grade 3-4 3223 (5)
None 50,878 (81)
Missing, n 88

Graft choice
Bone–patellar tendon–bone 15,639 (25)
Hamstring tendon 43,518 (69)
Quadriceps tendon 2520 (4)
Other 1278 (2)

Tibial fixation device
Interference screw 55,792 (89)
Suspension/cortical device 3643 (6)
Other 2356 (4)
Missing, n 1164

Femoral fixation device
Interference screw 16,434 (26)
Suspension/cortical device 39,742 (63)
Other 4822 (8)
Missing, n 1957

Fixation device combination
2 interference screws 15,865 (25)
Interference screw (femur) and

suspension device (tibia)
236 (0.4)

2 suspension/cortical devices 2994 (5)
Suspension device (femur) and

interference screw (tibia)
34,895 (55)

Other 6529 (10)
Missing, n 2436

Injured side
Right 32,147 (51)

(continued)

TABLE 1
(continued)

Value
(N = 62,955)

Left 30,807 (49)
Missing, n 1

Previous surgery on opposite knee 4839 (8)
Missing, n 2946

Previous surgery on same knee 10,312 (16)
Missing, n 673

Time from injury to surgery, median (IQR), y 0.61 (0.33-1.32)
Missing, n 2083

Registry
DKRR 34,554 (55)
NKLR 28,401 (45)

aData are reported as n (%) unless otherwise indicated. DKRR,
Danish Knee Ligament Reconstruction Registry; IQR, interquar-
tile range; KOOS, Knee injury and Osteoarthritis Outcome Score;
NKLR, Norwegian Knee Ligament Register.
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calculated using methods adapted for censored data. Con-
cordance was determined using the Harrell C-index at 1-,
2-, and 5-year follow-up. The C-index is a generalization
of the common area under the receiver operating

characteristic curve metric. As with the area under the
curve, it ranges from 0 to 1, with 1 indicating perfect con-
cordance. The C-index measures the proportion of pairs of
observations in which predicted rankings of survival

Figure 1. The 4 plots show the relative feature importance in each of the machine learning models. The highlighted bars indicate fea-
tures selected for the Cox lasso model. The random survival forest, gradient boosting, and super learner plots show features in the top
half according to the importance score for readability. Feature importance is measured on a different scale for each model, and thus,
only rankings of features, rather than scores, should be compared among the models. The Cox lasso model measures feature impor-
tance by absolute effect size. The random survival forest and super learner models use permutation-based importance, which meas-
ures the relative change in model performance after randomly permuting values of the given feature. The gradient boosting model uses
the difference in the error rate if the feature was to be removed, normalized to a total sum of 100. BQT, quadriceps tendon autograft
with bone; comb, combined; cort, cortical; fix, fixation; KOOS, Knee injury and Osteoarthritis Outcome Score; Men, meniscus; QOL,
Quality of Life; QT, quadriceps tendon autograft; Sport, Sport and Recreation Subscale; susp, suspension; Yrs, years.
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probabilities correspond to actual rankings.14 Furthermore,
calculation of the C-index is limited to pairs of patients with
sufficient information to determine the true ordering: either
both patients must have known times to revision or one has
undergone revision surgery and the other is censored (no
revision yet, with the time since surgery at least as long
as the other patient’s time to revision). For example, a con-
cordance of 0.80 would mean that for a random pair of
patients, risk estimates match the true ordering of times
to revision approximately 80% of the time.

Calibration is a measure of the accuracy of predicted
probabilities that compares expected outcomes with actual
outcomes. We calculated calibration using a version of the
Hosmer-Lemeshow test that accounts for censoring.47 This
statistic sums the average misclassification in each pre-
dicted risk quintile and converts the sum into a chi-square
statistic. Larger values of calibration indicate worse accu-
racy and correspond to smaller P values, with statistical
significance indicating a rejection of the null hypothesis
of perfect calibration.

Missing Data

Models were trained using observations from the training
set with complete data on all variables. The models were
then evaluated using observations from the test set with
complete data on all variables needed for a given model.
To assess the effect of restricting data to complete cases,
we re-trained and re-evaluated the models using multiple
imputation. This is a common technique for dealing with
missing data that fills in incomplete values based on pat-
terns in the data. Multiple imputation allowed the assess-
ment of the reasonableness of restricting the analysis to
complete cases. Multiple imputation by chained equations
was conducted with 5 imputations on training and test
data (package mice). The variables with nonzero coeffi-
cients for the Cox lasso model with complete cases were
used to refit the model with each imputed training data
set, averaging predictions over the 5 imputations. The

random survival forest, gradient boosting, and super
learner models were similarly refit. A bootstrap procedure
was used to compare the calibration between the complete
case and multiply imputed models.

RESULTS

Patient Data

Table 1 details the characteristics of the population at the
time of surgery and shows all variables included for the
analysis. After data cleaning, the combined registries’ pop-
ulation consisted of 62,955 patients, with 55% from the
DKRR and 45% from the NKLR. The primary outcome,
revision surgery, occurred in 5% of patients with a mean
follow-up of 7.6 6 4.5 years. The population was 58%
male, with a median age at the time of the primary injury
of 24 years (interquartile range, 18-34 years) and a median
age at the time of surgery of 26 years (interquartile range,
20-36 years).

Model Performance

The 3 nonparametric models—random survival forest, gra-
dient boosting, and super learner—had moderate concor-
dance (0.67) at all follow-up times, with 95% CIs ranging
from 0.64-0.69 to 0.65-0.70 (Table 2).

The Cox lasso model performed more poorly, with a con-
cordance of 0.58-0.59. The Cox lasso model showed moder-
ate evidence of miscalibration (P = .01-.043) at 2 and 5
years. The other 3 models were better calibrated, with
the exception of the super learner model at 1 year (P =
.034) and 5 years (P = .008). The random survival forest
and gradient boosting models also demonstrated moderate
evidence of miscalibration at 5 years. Model performance
for the original NKLR algorithm demonstrated similar
concordance (0.67-0.69) and calibration.30

Model performance with imputation is presented in
Table 3.

TABLE 2
Model Performance With Complete Case Training Data

Concordance (95% CI) Calibration Statistic Calibration P Value

1 y
Cox lasso 0.59 (0.56-0.61) 7.19 .066
Random survival forest 0.67 (0.64-0.69) 5.54 .136
Gradient boosting 0.67 (0.65-0.70) 7.48 .058
Super learner 0.67 (0.65-0.69) 8.67 .034

2 y
Cox lasso 0.58 (0.56-0.61) 8.17 .043
Random survival forest 0.67 (0.64-0.69) 6.42 .093
Gradient boosting 0.67 (0.64-0.69) 4.53 .210
Super learner 0.67 (0.64-0.69) 4.10 .250

5 y
Cox lasso 0.58 (0.56-0.61) 11.37 .010
Random survival forest 0.67 (0.65-0.69) 9.27 .026
Gradient boosting 0.67 (0.64-0.69) 11.07 .011
Super learner 0.67 (0.64-0.69) 11.82 .008
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Multiply imputed data did not show notable differences
from the complete case analysis. The concordance 95% CIs
were nearly identical in all cases. Observed calibration
ratios from all 4 models were compared with the bootstrap
distribution, and all the observed ratios were within the
95% CI. This suggests that there was no significant differ-
ence in calibration between the complete case and multiply
imputed models.

Factors Predicting Outcome

The most important factors predicting revision surgery,
according to the 3 best-performing models, included age
at the time of surgery and injury, years between injury
and surgery, graft choice, and preoperative KOOS–Quality
of Life and KOOS-Sport and Recreation scores. Variables
in approximately the top half by feature importance in
the random survival forest, gradient boosting, and super
learner models are shown in the bottom 3 panels of Figure
1. Variables with nonzero coefficients in the Cox lasso
model are shown in the top panel of Figure 1. The Cox lasso
model quantifies feature importance in terms of the abso-
lute value of the associated effect size. The gradient boost-
ing model uses the difference in the error rate if the feature
was to be removed. The random survival forest and super
learner models use permutation-based variable impor-
tance, measuring the relative change in model perfor-
mance after randomly permuting values of the given
variable.

DISCUSSION

Machine learning analysis of the combined NKLR and
DKRR enabled the prediction of revision surgery after pri-
mary ACLR with moderate accuracy. The most important
finding of this study, however, was that this analysis of
nearly 63,000 patients yielded similar prediction accuracy
as a previous study of approximately 25,000 patients.30,32

This suggests that the ceiling effect of the registries has
been reached, and the addition of more patients is unlikely
to appreciably improve prediction accuracy. This informa-
tion can be used to further the evolution of national
ACLR registries regarding variable inclusion and data
collection.

Machine learning applications within orthopaedic sur-
gery have been increasing at an exponential rate in recent
years.22 These advanced statistical techniques can evalu-
ate large data sets and recognize complex interactions
between variables.28 ‘‘Learning’’ from these interactions,
machine learning models can create algorithms capable
of predicting outcomes for patients, often at a level of accu-
racy superior to expert humans.3,8,37,39,40,45,50

Similar to how humans learn through repetition and
experience, machine learning algorithms often require
large volumes of data to optimize model accuracy. Data vol-
ume, however, is not the only factor that contributes to the
accuracy of a model. Just as important is the quality of the
data. If the data set used for model creation does not con-
sider variables that are associated with the outcome of
interest, then the full potential of the model may not be
reached. Poor data quality can also manifest as substantial
missing or incomplete data, which affects the ability of the
model to learn and form accurate associations between pre-
dictors and outcomes. Techniques such as imputation can
address some data quality inadequacies, but there are lim-
its to what may be overcome.2

After nearly 20 years of data collection by the NKLR
and DKRR, data quantity is superb, with satisfactory com-
pleteness and data accuracy.7,34-36 However, the present
study suggests that for an improvement in our ability to pre-
dict outcomes based on registry data, an evolution in the
variables collected is required. This represents a significant
challenge, as the balance between optimal variable collec-
tion and surgeon compliance is a delicate one.11,29 Data col-
lection must be streamlined to avoid survey fatigue, and the
addition of variables to the registry must be carefully con-
sidered, weighing the added value against the additional
onus on the surgeon, which may affect compliance.

TABLE 3
Model Performance With Multiply Imputed Training Data

Concordance (95% CI) Calibration Statistic Calibration P Value

1 y
Cox lasso 0.59 (0.56-0.61) 8.35 .039
Random survival forest 0.66 (0.64-0.69) 4.17 .244
Gradient boosting 0.68 (0.65-0.70) 7.57 .056
Super learner 0.67 (0.65-0.70) 7.99 .046

2 y
Cox lasso 0.59 (0.56-0.61) 8.81 .032
Random survival forest 0.67 (0.65-0.70) 8.96 .030
Gradient boosting 0.67 (0.65-0.70) 8.98 .030
Super learner 0.67 (0.65-0.70) 8.34 .039

5 y
Cox lasso 0.58 (0.56-0.61) 8.30 .040
Random survival forest 0.67 (0.65-0.70) 8.95 .030
Gradient boosting 0.67 (0.65-0.69) 11.53 .009
Super learner 0.67 (0.65-0.69) 14.05 .003
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Factors that may improve prediction accuracy and could
be considered for supplementation in national registers
include data regarding radiographic findings,4,12,13,18,23,33,48

adjunctive surgical procedures, clinical examination results,
rehabilitation details,38 and alternative patient-reported
outcome measures such as psychological factors.5 Preopera-
tive and postoperative radiographic indices could be manu-
ally captured, for example, tibial slope and coronal
alignment, or included as raw image files that could then
be evaluated using computer vision machine learning tech-
niques.21 The recording of additional surgical details such
as graft diameter/size, ligament augmentation, lateral
extra-articular tenodesis, or anterolateral ligament recon-
struction may also be of value, given their recent association
with outcomes.1,10,15,16,24,26,42,52 Clinical examination and
rehabilitation information such as preoperative knee laxity
grade25,43 could be obtained via third-party sources such as
physical therapists or via natural language processing of
patient chart notes.49 Finally, the KOOS may not be the
most appropriate patient-reported outcome tool for the
patient population, and an alternative measurement of
patient function, such as the baseline Marx activity level,
could be considered for inclusion in registries moving
forward.19,27

It is worth mentioning that an algorithm for the predic-
tion of revision surgery after primary ACLR will likely
never achieve perfect or even excellent performance in
the traditional sense. There are 2 main reasons for this.
First, reinjury events leading to revision surgery may
occur randomly, such as after a slip on ice or a collision on
the playing field. That randomness, combined with the var-
iance related to uncollected variables, limits the predictive
capability of ACLR failure models. The second reason is
that the outcome, in this case, revision surgery, is itself
imperfect; that is, not everyone who has experienced a fail-
ure will undergo revision surgery. This is a major consider-
ation for most clinical predictive models, which are limited
by the chosen endpoint. Although discrimination has often
been interpreted as performance .0.9 being excellent,
.0.8 being good, .0.7 being fair, and \0.7 being poor,44

most clinically useful algorithms demonstrate performance
in the range of 0.65 to 0.80.51 In fact, discrimination .0.8
for clinical predictive models may represent data misman-
agement or model overfitting.20

Modeling using combined DKRR and NKLR data
revealed some notable differences between the 2 registries.
The poor performance of the Cox lasso model is, in part,
caused by the fact that when modeled separately, the 2 reg-
istry populations led to the selection of different variables
and different effect sizes for the selected variables. The
model fit to the combined data, therefore, is unable to
achieve either of these individually optimal fits and thus
performs more poorly. The nonparametric models did not
have this limitation because they were able to fit the
data with more flexibility. This observation helps explain
the fact that although the Cox lasso model was the best
model in the previous study of the NKLR,30 here, the
more flexible models performed better.

The present study has some limitations. First, even
though several machine learning methods were considered,

it is possible that another model may have performed differ-
ently. Second, there was a high proportion of missing preop-
erative KOOS data (47%, Table 1), and most patients with
this missing variable were from the DKRR. Because preop-
erative KOOS data have been important in predicting out-
comes based on previous studies, this substantial
missingness likely contributed to the limited improvement
in outcome prediction accuracy. In addition, patients were
pooled across the entire time period from 2004 to 2020.
Therefore, this analysis may inherit bias related to temporal
changes in the revision surgery risk, as surgical indications,
techniques, and trends have evolved over time. These
changes were not directly accounted for in the present study
but likely represent a low risk of bias, given the stable revi-
sion surgery rate observed in the registries.

Regarding clinical limitations of this study, more varia-
bles are required for revision prediction using this algo-
rithm than the previously published NKLR calculator,
which only required the input of 5 variables. This means
that the present algorithms are more onerous to use in
the office setting, with no appreciable improvement in pre-
diction accuracy compared with the NKLR model. It there-
fore is likely of limited clinical value unless future external
validation demonstrates superiority with different patient
populations.

CONCLUSION

Machine learning analysis of the combined NKLR and
DKRR enabled prediction of the revision ACLR risk with
moderate accuracy. However, the resulting algorithms
were less user-friendly and did not demonstrate superior
accuracy in comparison with the previously developed
model based on patients from the NKLR alone, despite
the analysis of nearly 63,000 patients. This ceiling effect
suggests that simply adding more patients to current
national knee ligament registers is unlikely to improve
predictive capability and may prompt future changes to
increase variable inclusion.
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Ceiling Effect of the Combined Norwegian and Danish Knee Ligament Registers Limits Anterior 
Cruciate Ligament Reconstruction Outcome Prediction  
 
 
 
APPENDIX 
 
Cox Lasso1 
The Cox Lasso applies Lasso (L1) regularization to the Cox proportional hazards model for 
regression on right-censored time-to-event outcomes. The method performs variable selection by 
applying a penalty during model fitting that sets less important predictor coefficients to zero. The 
remaining (non-zero) coefficients comprise the selected predictors. A tuning parameter controls 
the extent of this shrinkage: larger values of the tuning parameter correspond to more shrinkage 
and thus the selection of fewer predictors. We fit the Cox Lasso using the glmnet package in R, 
with the tuning parameter selected via cross-validation to balance model simplicity and fit. 
 
Survival Random Forest2 
The survival random forest, as implemented in the randomForestSRC R package, uses an 
ensemble tree method designed for right-censored time-to-event data. A log-rank split rule is 
used, and the estimates associated with each terminal node are computed using the Kaplan-Meier 
estimator (survival estimate) and the Nelson-Aalen estimator (cumulative hazard estimate). 
Estimates for an individual are averaged over all bootstrap samples for which the individual is 
out of bag (OOB). Prediction error for the forest is measured by 1-C, where C is Harrell’s 
concordance index, a measure of accuracy in ranking pairs in terms of their predicted and actual 
survival. 
 
Gradient boosted regression3,4 
Gradient boosting uses an iterative method to fit a regression function to the data. At each 
iteration, the gradient, or the derivative of the loss function with respect to the current regression 
function, is calculated. The regression function is then updated in the direction of this gradient, 
improving the fit. Gradient boosted regression as implemented in the R package gbm, which we 
used for our model, uses regression trees as the functions. To accommodate right-censored time-
to-event data, the model uses the negative log partial likelihood under the Cox proportional 
hazards model as the loss function. 
 
Super learner5 
The super learner is an ensemble method that combines other machine learning models to 
increase flexibility. The super learner produces a weighted average of its component models by 
using cross-validation to obtain predictions for each component model, and then training the 
overall weighted average model to minimize prediction error. The user may specify many 
different machine learning models as components for the super learner. In this analysis, the super 
learner combined random survival forest and gradient boosted regression models. 
 
References: 
1.  Simon N, Friedman J, Hastie T, Tibshirani R. Regularization Paths for Cox’s Proportional 

Hazards Model via Coordinate Descent. J Stat Softw. 2011;39(5). doi:10.18637/jss.v039.i05 



2.  Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. Ann Appl 
Stat. 2008;2(3):841-860. doi:10.1214/08-AOAS169 

3.  Friedman JH. Greedy function approximation: A gradient boosting machine. Ann Stat. 
2001;29(5). doi:10.1214/aos/1013203451 

4.  Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal. 2002;38(4):367-378. 
doi:10.1016/S0167-9473(01)00065-2 

5.  van der Laan MJ, Polley EC, Hubbard AE. Super Learner. Stat Appl Genet Mol Biol. 
2007;6(1). doi:10.2202/1544-6115.1309 

 
 





Paper IV 

 

Martin RK, Wastvedt S, Pareek A, Persson A, Visnes H, Fenstad AM, Moatshe G, Wolfson J, 

Lind M, Engebretsen L. Machine learning algorithm to predict anterior cruciate ligament revision 

demonstrates external validity. Knee Surg Sports Traumatol Arthros. 2022;30(2):368-375. 

doi:10.1007/s00167-021-06828-w 

  





Vol:.(1234567890)

Knee Surgery, Sports Traumatology, Arthroscopy (2022) 30:368–375
https://doi.org/10.1007/s00167-021-06828-w

1 3

KNEE

Machine learning algorithm to predict anterior cruciate ligament 
revision demonstrates external validity

R. Kyle Martin1,2  · Solvejg Wastvedt3 · Ayoosh Pareek4 · Andreas Persson5,6,7 · Håvard Visnes5 · 
Anne Marie Fenstad5 · Gilbert Moatshe6,7 · Julian Wolfson3 · Martin Lind8 · Lars Engebretsen6,7

Received: 10 October 2021 / Accepted: 26 November 2021 / Published online: 1 January 2022 
© The Author(s) 2021

Abstract
Purpose External validation of machine learning predictive models is achieved through evaluation of model performance on 
different groups of patients than were used for algorithm development. This important step is uncommonly performed, inhib-
iting clinical translation of newly developed models. Machine learning analysis of the Norwegian Knee Ligament Register 
(NKLR) recently led to the development of a tool capable of estimating the risk of anterior cruciate ligament (ACL) revision 
(https:// swast vedt. shiny apps. io/ calcu lator_ rev/). The purpose of this study was to determine the external validity of the NKLR 
model by assessing algorithm performance when applied to patients from the Danish Knee Ligament Registry (DKLR).
Methods The primary outcome measure of the NKLR model was probability of revision ACL reconstruction within 1, 2, 
and/or 5 years. For external validation, all DKLR patients with complete data for the five variables required for NKLR pre-
diction were included. The five variables included graft choice, femur fixation device, KOOS QOL score at surgery, years 
from injury to surgery, and age at surgery. Predicted revision probabilities were calculated for all DKLR patients. The model 
performance was assessed using the same metrics as the NKLR study: concordance and calibration.
Results In total, 10,922 DKLR patients were included for analysis. Average follow-up time or time-to-revision was 8.4 
(± 4.3) years and overall revision rate was 6.9%. Surgical technique trends (i.e., graft choice and fixation devices) and injury 
characteristics (i.e., concomitant meniscus and cartilage pathology) were dissimilar between registries. The model produced 
similar concordance when applied to the DKLR population compared to the original NKLR test data (DKLR: 0.68; NKLR: 
0.68–0.69). Calibration was poorer for the DKLR population at one and five years post primary surgery but similar to the 
NKLR at two years.
Conclusion The NKLR machine learning algorithm demonstrated similar performance when applied to patients from the 
DKLR, suggesting that it is valid for application outside of the initial patient population. This represents the first machine 
learning model for predicting revision ACL reconstruction that has been externally validated. Clinicians can use this in-clinic 
calculator to estimate revision risk at a patient specific level when discussing outcome expectations pre-operatively. While 
encouraging, it should be noted that the performance of the model on patients undergoing ACL reconstruction outside of 
Scandinavia remains unknown.
Level of evidence III.
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Introduction

At the time of primary surgery, how does a surgeon estimate 
the risk of their patient needing a revision anterior cruci-
ate ligament (ACL) reconstruction in the future? Numerous 

studies have defined failure rate epidemiology and identified 
risk factors such as age [13, 18, 24, 27, 32, 33], graft choice 
[13, 18, 21] and size [1], activity level [13, 33], body com-
position [27], ligamentous laxity [14, 18], and tibial slope 
[10, 31]. Despite this mass of knowledge, the ability to syn-
thesize it and accurately quantify revision risk at a patient-
specific level remains elusive and is often influenced by sur-
geon experience. This uncertainty is rooted in the complex 
relationships between the known (and unknown) risk factors 
that may be present to varying degrees in the patient seated 
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in the office. The personal experience of the surgeon com-
bined with their subjective interpretation of these variables 
in real time leads to the equivalent of an educated guess 
regarding revision rate.

Machine learning has the potential to add clarity and 
improve our predictive capability. While relatively new to 
knee ligament surgery, the application of machine learn-
ing is rapidly transforming clinical care in several fields, 
including orthopaedic surgery. In short, machine learning 
is a combination of advanced statistical techniques that can 
interpret large data sets that are more complex than would be 
possible with traditional statistics. Through analysis of large 
databases, machine learning can decipher the complex inter-
actions between variables and generate algorithms capable 
of outcome prediction. Often, the result is accuracy that is 
comparable to or better than the prediction of experts in the 
field [5, 8, 23, 25, 26, 29, 34].

Recently, machine learning was used to develop a tool 
that can quantify revision risk for a patient undergoing pri-
mary ACL reconstruction (https:// swast vedt. shiny apps. io/ 
calcu lator_ rev/; Fig. 1)[19]. The source of data included 
nearly 25,000 patients with primary ACL reconstruc-
tion recorded in the Norwegian Knee Ligament Register 
(NKLR). The result was a well-calibrated tool capable of 
predicting revision risk one, two, and five years after pri-
mary ACL reconstruction with moderate accuracy. Follow-
ing model development, external validation is the next step 
toward clinical application of new models.

The purpose of this study was to determine the external 
validity of the previously published NKLR ACL revision 
algorithm by assessing its performance when applied to 
patients from the Danish Knee Ligament Registry (DKLR). 
The hypothesis was that model performance would be simi-
lar, suggesting validity of the algorithm. This represents 
the first study to assess external validation of a clinical 
tool developed using machine learning techniques for out-
come prediction following ACL reconstruction. The abil-
ity to estimate revision risk at a patient specific level may 
help guide discussion surrounding outcome expectations 
pre-operatively.

Materials and methods

This manuscript was written in accordance with the Trans-
parent Reporting of a multivariable prediction model for 
Individual Prognosis Or Diagnosis (TRIPOD) statement [6]. 
The TRIPOD statement is a comprehensive set of recom-
mendations for studies that develop and/or validate predic-
tion models. The 22-item checklist aims to improve trans-
parency of prediction model studies through full and clear 
information reporting, independent of study methods.

Ethics

At the time of enrollment in the NKLR all patients provide 
informed consent and the Norwegian Data Inspectorate 
grants permission for the register to collect, analyze, and 
publish on health data. Data registration was performed 
confidentially according to Norwegian and European Union 
(EU) data protection rules, with all data de-identified prior 
to retrieval for analysis. The Regional Ethics Committee 
(REK) states that it is not necessary to obtain further ethical 
approval for Norwegian register-based studies [9]. Similarly, 
the DKLR obtains informed consent at the time of enroll-
ment and patient data was de-identified prior to retrieval for 
analysis with no further ethical approval required.

Data source

Original prediction model development was based on 
machine learning analysis of patients contained within the 
NKLR while model validation was performed using patients 
from the DKLR. Both national knee ligament registries 
prospectively enrol patients undergoing cruciate ligament 
reconstruction pre-operatively and record demographic, 
injury, surgical, and follow-up outcome details including 
subsequent revision reconstruction. The Norwegian regis-
try was established in 2004 and reporting has been manda-
tory since 2017. Overall compliance with the NKLR was 
86% in 2017–18. Patients are registered using their unique Fig. 1  Link to ACL revision risk prediction in-clinic calculator [19]
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Norwegian national identification number which links iden-
tification of subsequent revision surgery performed within 
Norway, regardless of the provider. The DKLR was founded 
in 2005 and similarly records longitudinal outcome of ACL 
reconstruction within Denmark.

Participants and predictors

In the index study of NKLR patients [19], four machine 
learning prediction models were assessed for the ability to 
predict subsequent revision ACL reconstruction after pri-
mary surgery. The four models tested were Cox Lasso, sur-
vival random forest, generalized additive model, and gradi-
ent boosted regression. These four models are among the 
most commonly used for this type of analysis. The patients 
in the NKLR were randomly split into training (75%) and 
test (25%) sets; the algorithm was developed using the train-
ing set of patients, and the performance of the algorithm was 
assessed with the hold-out test set, previously unseen by the 
models. The Cox Lasso model was the best-performing of 
the four tested models and was used for the development of 
an in-clinic revision-risk calculator (Fig. 1).

Regarding outcome prediction, the four models assessed 
all the available data in the NKLR to “learn” which factors 
are associated with—and can be used to predict—which 
patients will eventually undergo revision surgery. Starting 
with the 24 total predictor variables in the NKLR, the mod-
els eliminated variables which do not significantly improve 
prediction ability, without sacrificing accuracy. The result 
was an algorithm developed using the Cox Lasso model that 
only required five variables (out of the 24) for outcome pre-
diction. The model was well calibrated and demonstrated 
moderate discriminative ability in predicting revision sur-
gery after primary ACL reconstruction [19].

This study sought to validate the previously developed 
Cox Lasso model from the NKLR. The Cox Lasso model 
was selected for validation since it was the best performing 
model and because some of the variables required for the 
random forest and gradient boosted regression models were 
not available in the DKLR. Thus, while the full set of patient 
characteristics are shown in Table 1, only the five predictors 
selected by the NKLR Cox Lasso model were used in this 
validation analysis. The five variables required for outcome 
prediction using the Cox Lasso model were: patient age at 
primary surgery, KOOS QoL score at primary surgery, graft 
choice, femur fixation method, and years between injury and 
ACL reconstruction.

For model validation, patients in the DKLR with primary 
surgery dates from July 2005 through December 2020 were 
included (N = 34,678). To match variables used in the NKLR 
model, graft choice and femur fixation device were re-coded 
as shown in Table 1. New variables were defined for time 

Table 1  Characteristics of Danish registry patients

Variablea N = 34,678

Years: surgery to data current date (2021-06-14) 8.3 (4.3)
 Missing 1

Revision 1791 (5.2%)
 Missing 1

Follow-up time or time to revision 7.6 (4.4)
 Missing 1

Age at surgery 29 (10)
 Missing 1

Age at injury 27 (10)
 Missing 499

Sex
 Female 13,958 (40%)
 Male 20,719 (60%)
 Missing 1

Pre-surgery KOOS QOL score (out of 10) 3.90 (1.61)
 Missing 23,522

Pre-surgery KOOS Sports score (out of 10) 3.80 (2.55)
 Missing 23,523

Below median on all pre-surgery KOOS 1868 (17%)
 Missing 23,520

Meniscus injury 15,501 (45%)
Cartilage injury 5345 (15%)
Graft choice
 BPTB 3,218 (9.3%)
 Hamstring 28,291 (82%)
 Unknown/Other 3045 (8.8%)
 Missing 124

Tibia fixation device
 Interference screw 30,817 (89%)
 Suspension/cortical device 983 (2.8%)
 Unknown/Other 2878 (8.3%)

Femur fixation device
 Interference screw 6,072 (18%)
 Suspension/cortical device 24,949 (72%)
 Unknown/Other 3657 (11%)

Fixation device combination
 Interference screw × 2 5951 (17%)
 Interference/Suspension 10 (< 0.1%)
 Suspension/cortical device × 2 968 (2.8%)
 Suspension/Interference 22,308 (64%)
 Unknown/Other 5441 (16%)

Injured side
 Right 17,781 (51%)
 Left 16,895 (49%)
 Missing 2

Previous surgery on opposite knee 2745 (7.9%)
 Missing 108

Previous surgery on same knee 28,809 (83%)
Time injury to surgery (years) 1.65 (3.21)
 Missing 712



371Knee Surgery, Sports Traumatology, Arthroscopy (2022) 30:368–375 

1 3

between injury and primary surgery. The Knee Injury and 
Osteoarthritis Outcome Score (KOOS) Quality of Life 
(QoL) predictor was scaled to a score out of ten. Patients in 
the DKLR with missing data for any of the five predictors 
were excluded from model validation.

Outcome measures and model performance

The primary outcome in the NKLR Cox Lasso model was 
probability of revision ACL reconstruction within 1, 2, and/
or 5 years. Using R (version: 3.6.1, R Core Team 2019, 
Vienna, Austria) the NKLR Cox Lasso model was applied 
to calculate predicted time-to-revision probabilities for all 
DKLR patients. Performance evaluation included censor-
ing of the time-to-event outcome. “Censoring” refers to the 
fact that, at any given follow-up time, complete informa-
tion on outcome is not known for all patients. Some patients 
have not been in the registry for the requisite number of 
years, while others have not yet experienced revision and it 
is unknown when or if they ultimately will.

Performance of the model was assessed using the same 
metrics as the NKLR study: calibration and concordance 
at each follow-up time. Calibration refers to the accuracy 
of the risk estimates and was calculated using a version of 
the Hosmer–Lemeshow statistic appropriate for censored 
data [30]. This statistic sums average misclassification in 
each predicted risk quantile and converts the result into a 
chi-squared statistic. A larger calibration statistic indicates 
worse calibration, and statistical significance means the 
null hypothesis of perfect calibration is rejected. Concord-
ance was computed using Harrell’s C-index [12] at 1, 2, and 
5-year follow-up times. The C-index is a generalization of 
area under the curve (AUC) for censored data that measures 
the proportion of ranked pairs of observations in which the 
predicted ranking corresponds with true outcomes. As with 
AUC, the C-index ranges from 0 to 1 with 1 indicating per-
fect concordance.

Results

Participants

Table 1 describes characteristics of the DKLR population at 
the time of primary surgery. Patients had an average age at 
primary surgery of 29 years (SD ± 10) and 60% were male. 

Hamstring graft was used in 82% of primary surgeries. Of 
the DKLR patients, 10,922 had complete data for all five 
variables required by the NKLR Cox Lasso model. Table 2 
compares DKLR patients with complete data for these five 
variables to the NKLR training-data patients with complete 
data. The large sample sizes produced p-values below the 
significance threshold on all characteristics, including a few 
clinically meaningful differences. The DKLR patients were 
more likely to have hamstring tendon autograft (DKLR: 
81%; NKLR: 59%) and suspension/cortical femur fixation 
(DKLR: 72%; NKLR: 53%). Additionally, the rate of con-
comitant meniscus (DKLR: 42%; NKLR: 53%) and chon-
dral (DKLR: 14%; NKLR: 23%) injuries were higher in the 
NKLR cohort, while overall revision rate was higher in the 
Danish registry patients (DKLR: 6.9%; NKLR: 5.2%). The 
DKLR patients with complete data on the five required vari-
ables were in general similar to those without complete data, 
particularly on the five required variables (Supplementary 
Table 1).

Model performance

The NKLR Cox Lasso model produced similar concordance 
with the DKLR population compared to the original NKLR 
test data (DKLR: 0.68; NKLR: 0.68–0.69). Calibration was 
poorer for the DKLR population than for the NKLR test 
data at 1 and 5 years post primary surgery but similar at two 
years (Table 3).

Discussion

The most important finding of this study was that a machine 
learning algorithm developed from the NKLR demonstrated 
similar performance when applied to patients from the 
DKLR. Despite different injury profiles including concomi-
tant meniscus/chondral injury rates and variation in surgical 
technique trends between the two nations, the concordance 
was nearly identical to that achieved with the index study 
of NKLR patients. This suggests that the algorithm is valid 
for application outside of the initial patient population and 
represents the first machine learning model for predicting 
revision ACL reconstruction that has been externally vali-
dated. The original model was developed to help guide the 
clinical discussion regarding surgical options and outcome 
expectations at a patient-specific level [19].

Machine learning models explore large datasets divided 
into inputs (predictors) and outputs (outcomes), to estab-
lish connections and relationships between them. These 
relationships may be more complex than could be identified 
through standard statistical analysis. When a machine learn-
ing algorithm can determine a link between the predictors 
and outcome of interest, it can then create a tool capable of 

a Statistics presented: Mean (SD); n (%)

Table 1  (continued)
Variablea N = 34,678
Systemic antibiotic prophylaxis 34,678 (100%)
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Table 2  Characteristics of 
patients with complete data on 
Norwegian Cox lasso variables

* Statistics presented: Mean (SD); n (%)
** Statistical tests: Welch Two Sample t test; Pearson’s Chi-squared test

Variable* Danish
N = 10,922

Norwegian
N = 14,161

P value**

Years: surgery to data current date (Danish: 
06–14-2021; Norwegian: 01–12-2020)

9.3 (4.1) 8.4 (4.1) < 0.001

Revision 755 (6.9%) 743 (5.2%) < 0.001
Follow-up time or time to revision 8.4 (4.3) 7.0 (4.2) < 0.001
Age at surgery 29 (11) 28 (10) < 0.001
Age at injury 27 (10) 26 (10) < 0.001
 Missing 9 0

Sex n.s
 Female 4916 (45%) 6376 (45%)
 Male 6006 (55%) 7785 (55%)

Pre-surgery KOOS QOL score (out of 10) 3.90 (1.61) 3.48 (1.87)  < 0.001
Pre-surgery KOOS Sports score (out of 10) 3.80 (2.55) 4.27 (2.73)  < 0.001
Missing 1 137
Below median on all pre-surgery KOOS 1825 (17%) 2799 (20%)  < 0.001
Meniscus injury 4584 (42%) 7537 (53%)  < 0.001
Cartilage injury 1579 (14%) 3318 (23%)  < 0.001
Graft choice  < 0.001
 BPTB 1133 (10%) 5522 (39%)
 Hamstring 8866 (81%) 8369 (59%)
 Unknown/Other 923 (8.5%) 270 (1.9%)

Tibia fixation device  < 0.001
 Interference screw 9925 (91%) 10,841 (77%)
 Suspension/cortical device 155 (1.4%) 1468 (10%)
 Unknown/Other 842 (7.7%) 1852 (13%)

Femur fixation device  < 0.001
 Interference screw 2025 (19%) 4763 (34%)
 Suspension/cortical device 7891 (72%) 7522 (53%)
 Unknown/Other 1006 (9.2%) 1876 (13%)

Fixation device combination  < 0.001
 Interference screw × 2 1978 (18%) 4645 (33%)
 Interference/Suspension 2 (< 0.1%) 90 (0.6%)
 Suspension/cortical device × 2 153 (1.4%) 1095 (7.7%)
 Suspension/Interference 7218 (66%) 5529 (39%)
 Unknown/Other 1571 (14%) 2802 (20%)

Injured side n.s
 Right 5512 (50%) 7149 (50%)
 Left 5409 (50%) 7012 (50%)
 Missing 1 0

Previous surgery on opposite knee 549 (5.0%) 1001 (7.1%) < 0.001
 Missing 27 0

Previous surgery on same knee 9014 (83%) 2412 (17%) < 0.001
Time injury to surgery (years) 1.75 (3.34) 1.66 (3.35) 0.040
Systemic antibiotic prophylaxis < 0.001
 Yes 10,922 (100%) 14,089 (99%)
 No 0 (0%) 46 (0.3%)
 Missing 0 (0%) 26 (0.2%)
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predicting this outcome for other patients. After a prediction 
model has been developed, the TRIPOD Statement strongly 
recommends external validation, achieved through evalua-
tion of model performance on new and different groups of 
patients than were used in the development of the algorithm 
[6]. However, this important step is uncommonly performed, 
inhibiting the clinical translation of newly developed models 
[28].

The original machine learning model was created based 
on a database including nearly 25,000 patients with 24 vari-
ables considered. Four machine learning models were evalu-
ated, and the Cox Lasso model was selected for the develop-
ment of an in-clinic prediction tool. This tool required the 
input of only five variables for the prediction of subsequent 
revision ACL reconstruction risk. Although the performance 
of this model was assessed using hold-out data that was not 
included in the learning phase, it only included patients from 
one nation, limiting its applicability to patients from other 
countries [19].

This study found that accuracy of the NKLR Cox Lasso 
model holds when applied to a large data set from another 
country with different injury characteristics and surgical 
technique trends. The prediction model demonstrated similar 
model performance when tested on patients from Denmark 
that had not been previously seen by the algorithm. It was 
initially developed using 75% of the patients in the NKLR 
and validated using the remaining 25%. This study validates 
the algorithm using an additional 11,000 patients from the 
DKLR and represents a necessary step toward clinical utility. 
While this is encouraging, it should be noted that the perfor-
mance of the model on patients undergoing ACL reconstruc-
tion outside of Scandinavia remains unknown. Additionally, 
there are currently no other published prediction models 
with which to compare the performance of this model.

Study population variance between the DKLR and NKLR 
populations may help explain differences in model calibra-
tion at one and five years post primary surgery. The DKLR 
patients with complete data had higher proportions of ham-
string tendon autograft and suspension/cortical femur fixa-
tion than patients in the NKLR test data. Both these vari-
ables are used in the NKLR Cox Lasso model. Thus, the 
relationship between graft choice and/or femur fixation and 

revision risk codified in the model may not be as accurate for 
patient populations with a substantially different distribution 
on these variables, such as those in the DKLR. Regarding 
the fact that the validation data set was limited to approxi-
mately one-third of the overall DKLR registry population 
due to missing values for the required predictors, the objec-
tive of this paper was to test the machine learning model on 
a new population and the inclusion of nearly 11,000 patients 
represents a suitable data set for this purpose.

While this novel technique represents a new frontier for 
health-related research, limitations regarding the clinical util-
ity of machine learning algorithms remain. Most importantly, 
the quality of the model is largely related to the quality of the 
data that it is developed from. The concordance of the revision 
ACL prediction tool is moderate based on both the initial and 
subsequent validation studies. As noted in the original paper, 
this may be related to data quality since several risk factors for 
failure of ACL reconstruction are not captured in the NKLR 
[19]. Examples of these factors include radiographic variables 
such as tibial slope and coronal alignment [2–4, 10, 15, 20, 
31], physical examination and rehabilitation details [11, 14, 
18, 22], and surgical technique factors such as tunnel position 
[16] and graft size [1, 7, 17]. The addition of these variables 
into the national knee ligament registers may improve future 
machine learning prediction endeavours.

There is an additional limitation concerning this external 
validation study. Since pre-operative KOOS QoL score at the 
time of surgery was one of the input variables required for 
outcome prediction, all patients in the DKLR without a pre-
operative KOOS score were excluded from the analysis. This 
resulted in the exclusion of approximately two-thirds of the 
patients contained in the DKLR since pre-surgical compliance 
with patient reported outcome measures is relatively low in the 
registry. Despite this, nearly 11,000 patients were still included 
in the model evaluation which is sufficient for validation.

Machine learning analysis of large health-care registries 
have the potential for great impact on patient care. These 
advanced statistical techniques can assess and interpret 
large volumes of data and recognize complex associations 
between predictor variables and patient-specific outcome. 
The resulting algorithm, as is the case with the present study, 
can be implemented into clinical care as an adjunct for the 

Table 3  Model performance Probability of 
Revision

Model Concordance Calibration 
statistic

Calibration p-value

1 year Original Norwegian Algorithm 0.686 4.89 n.s
Danish Knee Ligament Registry 0.678 22.24 < 0.001

2 years Original Norwegian Algorithm 0.684 11.35 0.01
Danish Knee Ligament Registry 0.676 11.82 0.008

5 years Original Norwegian Algorithm 0.683 6.19 n.s
Danish Knee Ligament Registry 0.678 13.98 0.003



374 Knee Surgery, Sports Traumatology, Arthroscopy (2022) 30:368–375

1 3

orthopaedic surgeon. Supplementing their personal experi-
ence and interpretation of the relevant risk factors, clinicians 
can use this in-clinic calculator to individualize their discus-
sions and quantify the risk of revision ACL reconstruction 
for their patients.

Conclusion

The NKLR machine learning algorithm demonstrated simi-
lar performance when applied to patients from the DKLR, 
suggesting that it is valid for application outside of the initial 
patient population. This represents the first machine learn-
ing model for predicting revision ACL reconstruction that 
has been externally validated. Clinicians can use this in-
clinic calculator to estimate revision risk at a patient specific 
level when discussing outcome expectations pre-operatively. 
While encouraging, it should be noted that the performance 
of the model on patients undergoing ACL reconstruction 
outside of Scandinavia remains unknown.
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Supplementary Table 1: Comparison of Danish registry patients with complete vs. 
incomplete data on Norwegian Cox lasso variables 
(Yellow highlights show Norwegian cox lasso variables) 

Variable* 
Complete 
N = 10,922 

Incomplete 
N = 23,756 

P-value** 

Years: surgery to data current date (06-14-2021) 9.3 (4.1) 7.9 (4.3) <0.001 
Missing 0 1  

Revision 755 (6.9%) 1,036 (4.4%) <0.001 
Missing 0 1  

Follow-up time or time to revision 8.4 (4.3) 7.2 (4.3) <0.001 
Missing 0 1  

Age at surgery 29 (11) 28 (10) 0.006 
Missing 0 1  

Age at injury 27 (10) 27 (10) n.s. 
Missing 9 490  

Sex   <0.001 
Female 4,916 (45%) 9,042 (38%)  
Male 6,006 (55%) 14,713 (62%)  
Missing 0 1  

Pre-surgery KOOS QOL score (out of 10) 3.90 (1.61) 3.74 (1.58) n.s. 
Missing 0 23,522  

Pre-surgery KOOS Sports score (out of 10) 3.80 (2.55) 3.76 (2.57) n.s. 
Missing 1 23,522  

Below median on all pre-surgery KOOS 1,825 (17%) 43 (18%) n.s. 
Missing 0 23,520  

Meniscus injury 4,584 (42%) 10,917 (46%) <0.001 
Cartilage injury 1,579 (14%) 3,766 (16%) <0.001 
Graft choice   <0.001 

BPTB 1,133 (10%) 2,085 (8.8%)  
Hamstring 8,866 (81%) 19,425 (82%)  
Unknown/Other 923 (8.5%) 2,122 (9.0%)  
Missing 0 124  

Tibia fixation device   <0.001 
Interference screw 9,925 (91%) 20,892 (88%)  
Suspension/cortical device 155 (1.4%) 828 (3.5%)  
Unknown/Other 842 (7.7%) 2,036 (8.6%)  

Femur fixation device   <0.001 
Interference screw 2,025 (19%) 4,047 (17%)  
Suspension/cortical device 7,891 (72%) 17,058 (72%)  
Unknown/Other 1,006 (9.2%) 2,651 (11%)  

Fixation device combination   <0.001 
Interference screw x2 1,978 (18%) 3,973 (17%)  
Interference/Suspension 2 (<0.1%) 8 (<0.1%)  
Suspension/cortical device x2 153 (1.4%) 815 (3.4%)  



2 
 

Suspension/Interference 7,218 (66%) 15,090 (64%)  
Unknown/Other 1,571 (14%) 3,870 (16%)  

Injured side   0.043 
Right 5,512 (50%) 12,269 (52%)  
Left 5,409 (50%) 11,486 (48%)  
Missing 1 1  

Previous surgery on opposite knee 549 (5.0%) 2,196 (9.3%) <0.001 
Missing 27 81  

Previous surgery on same knee 9,014 (83%) 19,795 (83%) n.s. 
Time injury to surgery (years) 1.75 (3.34) 1.60 (3.14) <0.001 

Missing 0 712  
Systemic Antibiotic Prophylaxis 10,922 (100%) 23,756 (100%)  

*Statistics presented: Mean (SD); n (%) 
**Statistical tests: Welch Two Sample t-test; Pearson's Chi-squared test; Fisher’s exact test for fixation device 
combination variable 
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Abstract
Purpose: A machine learning‐based anterior cruciate ligament (ACL)
revision prediction model has been developed using Norwegian Knee
Ligament Register (NKLR) data, but lacks external validation outside
Scandinavia. This study aimed to assess the external validity of the NKLR
model (https://swastvedt.shinyapps.io/calculator_rev/) using the STABILITY
1 randomized clinical trial (RCT) data set. The hypothesis was that model
performance would be similar.
Methods: The NKLR Cox Lasso model was selected for external validation
owing to its superior performance in the original study. STABILITY 1 patients
with all five predictors required by the Cox Lasso model were included. The
STABILITY 1 RCT was a prospective study which randomized patients to
receive either a hamstring tendon autograft (HT) alone or HT plus a lateral
extra‐articular tenodesis (LET). Since all patients in the STABILITY 1 trial
received HT ± LET, three configurations were tested: 1: all patients coded as
HT, 2: HT + LET group coded as bone‐patellar tendon‐bone (BPTB)
autograft, 3: HT + LET group coded as unknown/other graft choice. Model
performance was assessed via concordance and calibration.
Results: In total, 591/618 (95.6%) STABILITY 1 patients were eligible for
inclusion, with 39 undergoing revisions within 2 years (6.6%). Model
performance was best when patients receiving HT + LET were coded as
BPTB. Concordance was similar to the original NKLR prediction model for
1‐ and 2‐year revision prediction (STABILITY: 0.71; NKLR: 0.68–0.69).
Concordance 95% confidence interval (CI) ranged from 0.63 to 0.79. The
model was well calibrated for 1‐year prediction while the 2‐year prediction
demonstrated evidence of miscalibration.
Conclusion: When patients in STABILITY 1 who received HT + LET were
coded as BPTB in the NKLR prediction model, concordance was similar to
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the index study. However, due to a wide 95% CI, the true performance of the
prediction model with this Canadian and European cohort is unclear and a
larger data set is required to definitively determine the external validity.
Further, better calibration for 1‐year predictions aligns with general prediction
modelling challenges over longer periods. While not a large enough sample
size to elicit the true accuracy and external validity of the prediction model
when applied to North American patients, this analysis provides more support
for the notion that HT plus LET performs similarly to BPTB reconstruction. In
addition, despite the wide confidence interval, this study suggests optimism
regarding the accuracy of the model when applied outside of Scandinavia.

Level of Evidence: Level 3, cohort study.

KEYWORDS

ACL, external validation, machine learning, outcome prediction

INTRODUCTION

Anterior cruciate ligament (ACL) reconstruction (ACLR) is
a commonly performed procedure aimed at reducing
instability and restoring normal knee biomechanics
after injury. Unfortunately, graft rupture and subsequent
revision surgery remains an issue of concern—especially
among young, active patients [1, 2]. By now, several
risk factors for ACLR failure have been identified and
include both modifiable and non‐modifiable traits [3–6].
Recognition of these factors enables the clinician to
coarsely risk‐stratify patients who can influence surgical
decision‐making and outcome expectations. However,
due to the sheer number of potential risk factors and
the complex interactions between them, fine‐level risk
estimation remains challenging.

The emergence of machine learning applications
into the orthopaedic literature has been heralded as
a potential adjunctive tool capable of improving
outcome prediction accuracy [7, 8]. These advanced
statistical techniques can identify and interpret
complex and non‐linear interactions between vari-
ables leading to a more accurate understanding of
how risk factors may affect surgical outcomes, both
together and in isolation. This opens the door to the
possibility of patient‐specific risk estimation, surgical
discussion and outcome optimization.

Preliminary machine learning‐derived models for the
prediction of ACLR outcome, including revision surgery,
have recently been developed based on patients in
the Norwegian Knee Ligament Register (NKLR) [9, 10].
The revision surgery prediction model includes an
open‐access online clinical calculator (https://swastvedt.
shinyapps.io/calculator_rev/) and has undergone further
external validation using patients from the Danish Knee
Ligament Registry [11]. In general, external validation of
clinical machine learning models in orthopaedic surgery
is uncommonly performed and represents a crucial
step prior to widespread adoption and implementation

in clinical practice. External validation is valuable for
several reasons, including assessment of model general-
izability, minimizing bias and model overfitting, and
increasing trust and acceptance among patients and
clinicians regarding the utility of the model.

The purpose of this study was to determine the
external validity of the previously published ACL
revision prediction model when applied to patients
enrolled in the STABILITY 1 randomized clinical trial
investigating outcomes of hamstring tendon autograft
(HT) ACLR with or without lateral extra‐articular
tenodesis (LET) [12]. The hypothesis was that model
performance would be similar to the index study,
suggesting validity of the algorithm. This study repre-
sents the first attempt to assess external validation
using patients from outside of Scandinavia. If success-
ful, this algorithm may be used to estimate revision risk
at a patient‐specific level and help guide discussion
surrounding outcome expectations preoperatively.

MATERIALS AND METHODS

Development of the Norwegian ACL revision surgery
prediction algorithm was based on data from the NKLR.
At the time of enrolment in this national registry, all
patients provide informed consent and the Norwegian
Data Inspectorate granted permission to the register
for collection, analysis and publication on this health‐
related data. All data were de‐identified prior to retrieval
for model development and no further ethical approval
is required from the Regional Ethics Committee (REK)
for NKLR‐based studies [13]. The original prediction
model development was performed at the University of
Minnesota and the respective Institutional Review
Board similarly concluded that the study was exempt
from full review (#00012552). The STABILITY 1 trial
was approved by the Western Ontario Health Sciences
Research Ethics Board (#104524).
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Index model development

The original prediction model was developed through
machine learning analysis of all patients contained
within the NKLR who underwent primary ACLR [9]. This
national knee ligament registry prospectively enrols
patients undergoing cruciate ligament reconstruction
preoperatively and records demographic, injury, surgi-
cal and follow‐up outcome details including subsequent
revision surgery. The NKLR was established in 2004
and reporting has been mandatory since 2017. Overall
compliance with the NKLR approximates 88% [14].
Patients are registered using their unique Norwegian
national identification number which links identification
of subsequent revision surgery performed within
Norway, regardless of the provider.

In the index study of NKLR patients [9], four
machine learning prediction models were assessed
for the ability to predict subsequent revision ACLR after
primary surgery and the primary outcome was proba-
bility of revision ACLR within 1, 2 and/or 5 years. The
four models tested were Cox Lasso, survival random
forest, generalized additive model and gradient
boosted regression. These four models are among
the most commonly used for this type of analysis. The
patients in the NKLR were randomly split into training
(75%) and test (25%) sets, whereby the algorithm
was developed using the training set of patients, and
the performance of the algorithm was assessed with
the hold‐out test set, previously unseen by the models.
The Cox Lasso model was the best‐performing of the
four tested models and was used for the development
of an in‐clinic revision‐risk calculator.

Regarding outcome prediction, the four models
considered all the available data in the NKLR to ‘learn’
which factors are associated with—and can be used to
predict—which patients will eventually undergo revision
surgery. Starting with the 24 total predictor variables in
the NKLR, the models eliminated variables which do
not significantly contribute to prediction ability, without
sacrificing accuracy. The result was an algorithm
developed using the Cox Lasso model that only
required five variables (out of the 24) for outcome
prediction. The model was generally well calibrated
and demonstrated moderate discriminative ability in
predicting revision surgery after primary ACLR [9].

Data source

The validation data for this study were extracted from
the STABILITY 1 study, a randomized clinical trial
conducted across nine sites (seven in Canada and two
in Europe) [12]. This study investigated the 2‐year
outcomes of patients under 25 years of age who were
undergoing a primary ACLR. Patients were randomized
to undergo a HT ACLR either with or without an LET.

The patients in this trial were classified as being at high
risk of re‐injury and/or surgical failure based on
meeting at least two of the following criteria: a pivot
shift Grade 2 or higher, a desire to return to high‐risk/
pivoting sports, and/or generalized ligamentous laxity.
Outcome data for these patients were obtained at 3, 6,
12, and 24 months postoperatively.

Participants and predictors

This current study sought to validate the previously
developed Cox Lasso model from the NKLR. The Cox
Lasso model was selected for validation since it was
the best performing model. The Cox Lasso is a
penalized regression model, which selects a subset
of available variables for inclusion [15]. Thus, while a
more extensive set of patient characteristics were
assessed in development of the model, only the five
predictors required for the NKLR Cox Lasso model
were used in this validation analysis. The five variables
required for outcome prediction using the Cox Lasso
model were: patient age at primary surgery, Knee Injury
and Osteoarthritis Outcome Score Quality of Life
subscale (KOOS‐QOL) score at primary surgery, graft
choice, femur fixation method, and time between injury
and ACLR.

The graft choice options in the NKLR model are HT,
bone‐patellar tendon‐bone (BPTB), or other/unknown.
STABILITY 1 participants were randomized to have an
HT ± LET; therefore, all patients had an HT for the graft
choice. The two STABILITY 1 graft type groups were
coded in three different ways (1: all patients coded as
HT, 2: HT + LET group coded as BPTB, 3: HT + LET
group coded as unknown/other) to understand which
would be most appropriate and which group the
HT + LET group behaved most similar to in the model.
This approach was chosen based on a previous study
that demonstrated the addition of LET to an HT
behaved similarly to a BPTB [16]. Since the STABILITY
1 trial followed patients for 2 years post‐operatively,
5‐year data and predictions were not included. Two
patients without a documented revision date were
included, with their graft rupture date substituted for the
revision date (both 21 months postoperative). Patient
characteristics for the STABILITY 1 validation data set
are shown in Table 1 [12].

Model performance

Performance of the model was assessed using
the same metrics as the NKLR study: calibration and
concordance (discrimination) at each follow‐up time.
Performance evaluation included censoring of the
time‐to‐event outcome. ‘Censoring’ refers to the fact
that, at any given follow‐up time, complete information
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on outcome is not known for all patients. Some patients
have not been followed in the study for the requisite
number of years, while others have not yet experienced
revision and it is unknown when or if they ultimately will.

Statistical analysis

The program R (RStudio 2022.07.1) was used to
calculate predicted survival probabilities for all patients
in the validation data set. Calibration refers to the

accuracy of the risk estimates. In the NKLR study,
calibration was calculated using a version of the
Hosmer–Lemeshow statistic [17]. This statistic sums
average misclassification in each predicted risk quan-
tile and converts the result into a chi‐squared statistic.
However, for the validation analysis, the low number of
revisions in the validation data necessitated a slightly
different approach. Rather than divide the data into risk
quantiles, it was divided into three groups as follows:
0–25th percentile, 26–50th percentile, and 51–100th
percentile of predicted survival probability. This change

TABLE 1 Characteristics of patients in validation data set.

Characteristics
All patients, N = 618
(mean ± SD) or n (%)

Patients with complete model
data, N = 591 (mean ± SD) or n (%)

Age, years 18.9 ± 3.2 19.0 ± 3.2

Missing 1 (0.2) 0 (0)

Sex

Male 298 (48.2) 287 (48.6)

Female 319 (51.6) 304 (51.4)

Missing 1 (0.2) 0 (0)

BMI, kg/m2 24.1 ± 3.8 24.1 ± 3.8

Missing 8 (1.3) 2 (0.3)

KOOS‐QOL, 0‐100 33.2 ± 17.8 33.2 ± 17.8

Missing 16 (2.6) 0 (0)

Graft

HT 311 (50.3) 296 (50.1)

BPTB 0 (0) 0 (0)

Other/Unknown 0 (0) 0 (0)

HT + LET 307 (49.7) 295 (49.9)

Femur fixation method

Interference screw 0 (0) 0 (0)

Suspension or cortical device 618 (100) 591 (100)

Unknown or other 0 (0) 0 (0)

Years between injury & surgery 0.72 ± 1.49 0.72 ± 1.50

Missing 19 (3.1) 0 (0)

Revision

Yes 40 (6.5) 39 (6.6)

Within 1 year 9 (1.5) 8 (1.4)

Between 1 and 2 years 22 (3.6) 22 (3.7)

After 2 years 9 (1.5) 9 (1.5)

No 570 (92.2) 552 (93.4)

Missing 9 (1.5) 0 (0)

Abbreviations: BMI, body mass index; BPTB, bone‐patellar tendon‐bone; HT, hamstring tendon; LET, lateral extra‐articular tenodesis; KOOS‐QOL, knee
osteoarthritis outcome score quality of life scale.
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ensured an adequate number of revisions in each
group while retaining the statistical validity of the
original method. For both calibration methods, a larger
calibration statistic indicates worse calibration, and
statistical significance means the null hypothesis
of perfect calibration is rejected. Concordance was
computed using Harrell's C‐index [18] at 1‐ and
2‐year follow‐up times. The C‐index is a generalization
of area under the curve (AUC) that measures the
proportion of ranked pairs of observations in which the
predicted ranking corresponds with true outcomes.
As with AUC, the C‐index ranges from 0 to 1 with
1 indicating perfect concordance.

RESULTS

Participants

Of the 618 participants randomized in the STABILITY 1
study, 591 (95.6%) had complete data on Norwegian Cox
lasso variables (five predictor variables and outcome). Of
note, there were only 39 (6.6%) revision events in the
analysed data set, 30 of which occurred by 2‐year follow‐
up (5.1% of analysed sample). Eight patients had revision
surgery within 1‐year of their primary surgery while
another 22 patients had surgery between the first‐ and
second‐year time points. An additional nine patients
underwent revision after the 2‐year follow‐up timepoint.

In contrast to the original NKLR study cohort, which
included all patients undergoing ACLR in Norway, the
STABILITY 1 trial patients had a narrow age range
(14–25 years old) and all patients received HT with
suspensory fixation on the femur. Further, time from
injury to surgery was shorter and more consistent for
the STABILITY 1 patients relative to the NKLR data set.

Model performance

Model performance was best for both 1‐ and 2‐year
revision prediction when patients randomized to HT+ LET
in the STABILITY 1 trial were coded as BPTB in the
prediction calculator (Table 2). The model concordance
(discriminative ability) was similar in the validation data set
(0.71 and 0.71) compared to the development data set
(0.69 and 0.68) at 1‐ and 2‐year follow‐up, respectively,
with 95% confidence intervals (CI) ranging from 0.63 to
0.79. The concordance values were slightly better in the
STABILITY 1 data set compared to the Norwegian
registry; however, the associated 95% CI were much
wider (Table 2). The calibration statistic for the model
predicting 1‐year outcomes was adequately low (2.6) and
the associated non‐significant p value (0.10) indicates
the model is well calibrated (no significant difference
between observed and predicted probabilities of revision).
The 2‐year prediction model demonstrated evidence of

miscalibration in the validation data set (high calibration
statistic [11.7] and significant p< 0.01), similar to the
results seen in the Norwegian and Danish data [11].

DISCUSSION

The most important finding of this study was that when
patients in the STABILITY 1 trial who received HT +
LET were coded as BPTB in the Norwegian prediction
calculator, the model concordance was similar to the
index study. However, the 95% CI for the validation set
was wider than the original model, suggesting that
more data are required to definitively determine the
external validity. Further, model calibration was better
for predicting revision surgery within 1‐year and worse
when predicting 2‐year outcomes. This finding is in
keeping with the original study and with prediction
modelling in general, as predicting outcomes over
longer time‐periods is typically more challenging due to
the increased outcome variability observed over time.

At first glance, the performance of the NKLR model
presented in Table 2 may appear impressive—the
discriminative ability of the algorithm to properly order
patients regarding their revision risk (concordance) was
higher in the external validation set relative to both the
initial model validation and the external validation using
Danish patients [9, 11]. Closer inspection, however,
reveals a wide CI that extends beyond both ends of the
NKLR model performance CI. This is an important
distinction as it suggests the true accuracy of the
model for the STABILITY 1 patient population remains
unknown. A larger sample size would be necessary to
narrow this CI and more clearly ascertain the perform-
ance of the NKLR model on this different patient data set.

Model performance was worse when the patients
receiving HT+ LET were coded as having received either
HTor ‘Unknown/Other’ graft choices. The finding that the
failure rate for HT + LET ACLR is most similar to BPTB
ACLR is consistent with the literature [16]. In a previous
study, the STABILITY 1 data set was used for external
validation of the Multicenter Orthopaedic Outcomes
Network (MOON) autograft risk calculator, which included
either HT or BPTB as the graft type [16]. The validation
analysis was run once with the HT+ LET group coded as
HTonly and once coded as BPTB. Mirroring results of the
present study, the risk calculator was most predictive
(AUC= 0.73) when the LET group was coded as the
BPTB group. Hamstring tendon and BPTB autograft both
have a long history of use for ACLR, but several studies
have found higher failure rates among patients receiving
HT [19–21]. This difference is especially apparent in
young active patients and has influenced both clinical
practice and innovation within the specialty. In Norway,
HTwas the graft of choice until approximately 2015 when
a NKLR‐based study found higher failure rates versus
BPTB [20]. In 2012, 79% of patients received HT
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autograft while in 2016 that number dropped to 32%, with
BPTB representing 61% of all ACLR grafts that year. The
study of LET as an augment to HT ACLR represents an
important innovation in response to inferior outcomes with
HTalone and has consistently demonstrated lower failure
rates than HTalone [12, 22, 23]. These results reflect why
HT+ LET acts more like BPTB than HT alone or other
types of grafts in predictive models of graft failure/revision
surgery.

The orthopaedic literature has seen an exponential
increase in studies applying a machine learning
approach to data analysis. Most of these studies have
sought automatic radiologic diagnostics (computer
vision), language interpretation (natural language
processing) or outcome prediction. While the number
of novel machine learning and deep learning models
has proliferated, very few have completed the impor-
tant step of external validation.

While it is crucial to perform prior to widespread
adoption and implementation of these models, external
validation can present several challenges for clinician
scientists. First, a large volume of data is required for
model validation, and it can be difficult to find a suitably
large study population with the necessary variables

required for external validation. Ideally, patient popula-
tions should be similar with regard to the nature of data
collection and tracking of outcomes for appropriate model
evaluation. Another limitation is the possibility of data
transfer barriers between nations or health regions due to
local legislation and privacy concerns. For this reason, it
is often easiest to share machine learning algorithms
rather than patient data and requires collaborative efforts
between study groups. Finally, most machine learning
algorithms demonstrate a drop‐off in performance during
external validation, which raises the question of what
constitutes acceptable model performance in this setting.

The debate regarding acceptable model performance
is especially pertinent when evaluating models to predict
outcomes such as ACL revision surgery which will likely
never achieve excellent or perfect performance. These
designations have historically been reserved for models
with discrimination values greater than 0.90. Given the
randomness associated with subsequent ACL graft
rupture and the multiple variables which may contribute
to the decision to proceed with revision surgery, the
traditional interpretation of model performance is not
realistic for clinical models like this one. There is also
concern that models that do demonstrate ‘excellent’

TABLE 2 Model performance.

Probability of
revision Model Concordance

Calibration statistic
(quintile method)

Calibration
p value

1 year Original Norwegian Algorithm Performancea 0.686 (0.652–0.721) 4.9 n.s.

STABILITY data 0.713 (0.634–0.791) 2.6 n.s.

HT = HT

HT + LET = BPTB

STABILITY data 0.609 (0.528–0.691) 10.6 <0.01*

HT =HT

HT + LET = Unknown

STABILITY data 0.674 (0.597–07.51) 8.7 <0.01*

All patients = HT

2 years Original Norwegian Algorithm Performancea 0.684 (0.650–0.718) 11.3 0.01*

STABILITY data 0.713 (0.637–0.789) 11.7 <0.01*

HT =HT

HT + LET = BPTB

STABILITY data 0.608 (0.530–0.688) 8.9 <0.01*

HT =HT

HT + LET = Unknown

STABILITY data 0.673 (0.598–0.747) 10.2 <0.01*

All patients = HT

Abbreviations: BPTB, bone‐patellar tendon‐bone autograft; HT, hamstring tendon autograft; LET, lateral extra‐articular tenodesis; n.s., not statistically significant.
aSee Martin et al. [9].

*Statistical significance, p ≤ 0.05.
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discriminative ability may be the product of model
overfitting, limiting their real‐world performance. Ulti-
mately, the development of clinically useful outcome
prediction models relies on a three‐step approach
consisting of model development, external validation and
comparison with expert human prediction performance. It
is this final step which establishes the baseline above
which prediction models must perform in order to be
clinically relevant. At this time, no such comparison exists
for ACL outcome prediction and represents the next step
in ACL outcome prediction research.

There were some limitations to the current study. First,
the patient populations were different in several ways.
Due to the standardization in the STABILITY 1 random-
ized trial, the data set includes a narrow age range from
14 to 25 years old compared to a much wider age range
represented in the NKLR. Since all patients had HT
autograft ACLR, the femoral fixation was universally
suspensory/cortical leading to no variation in this predictor.
Further, due to the nature of the STABILITY 1 trial, the
chronicity of injury (time from injury to surgery in years) is
much smaller and more standardized than observed in
the NKLR. Another limitation is the fact that the sample
size used for external validation was small, with few
observed revision surgery events within 2 years (n = 30,
5%). This required a change in methodology for the
calculation of model calibration compared with the index
study. The calculation of model calibration was further
complicated by the fact that patients in the STABILITY 1
trial were enrolled based on inclusion criteria that identified
them as being particularly high‐risk for ACLR failure.

Although the results of this study did not confirm the
external validity of the NKLR revision prediction model,
model performance with this separate cohort of patients
was encouraging and will prompt further evaluation using
larger patient data sets. Additionally, LET was only added
as a variable collected by the NKLR in June 2019 and
therefore was not considered during the original prediction
model development. As the rate of LET during ACLR
increases, it is important to consider how this adjunctive
procedure may affect outcome predictions. This study, in
keeping with the findings of Marmura et al. [16], suggests
that outcome prediction for patients receiving LET in
addition to HT ACLR may be more accurate if they are
coded as BPTB in the revision prediction tool.

CONCLUSION

When patients in STABILITY 1 who received HT + LET
were coded as BPTB in the NKLR prediction model,
concordance was similar to the index study. However,
due to a wide 95% CI, the true performance of the
prediction model with this Canadian and European
cohort is unclear and a larger data set is required to
definitively determine the external validity. Further,
better calibration for 1‐year predictions aligns with

general prediction modelling challenges over longer
periods. While not a large enough sample size to elicit
the true accuracy and external validity of the prediction
model when applied to North American patients, this
analysis provides more support for the notion that HT
plus LET performs similarly to BPTB reconstruction. In
addition, despite the wide confidence interval, this
study suggests optimism regarding the accuracy of the
model when applied outside of Scandinavia.
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Unsupervised Machine Learning of the
Combined Danish and Norwegian Knee
Ligament Registers

Identification of 5 Distinct Patient Groups
With Differing ACL Revision Rates
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Background: Most clinical machine learning applications use a supervised learning approach using labeled variables. In contrast,
unsupervised learning enables pattern detection without a prespecified outcome.

Purpose/Hypothesis: The purpose of this study was to apply unsupervised learning to the combined Danish and Norwegian
knee ligament register (KLR) with the goal of detecting distinct subgroups. It was hypothesized that resulting groups would
have differing rates of subsequent anterior cruciate ligament reconstruction (ACLR) revision.

Study Design: Cohort study; Level of evidence, 3.

Methods: K-prototypes clustering was performed on the complete case KLR data. After performing the unsupervised learning
analysis, the authors defined clinically relevant characteristics of each cluster using variable summaries, surgeons’ domain knowl-
edge, and Shapley Additive exPlanations analysis.

Results: Five clusters were identified. Cluster 1 (revision rate, 9.9%) patients were young (mean age, 22 years; SD, 6 years),
received hamstring tendon (HT) autograft (91%), and had lower baseline Knee injury and Osteoarthritis Outcome Score
(KOOS) Sport and Recreation (Sports) scores (mean, 25.0; SD, 15.6). Cluster 2 (revision rate, 6.9%) patients received HT autograft
(89%) and had higher baseline KOOS Sports scores (mean, 67.2; SD, 16.5). Cluster 3 (revision rate, 4.7%) patients received
bone–patellar tendon–bone (BPTB) or quadriceps tendon (QT) autograft (94%) and had higher baseline KOOS Sports scores
(mean, 65.8; SD, 16.4). Cluster 4 (revision rate, 4.1%) patients received BPTB or QT autograft (88%) and had low baseline
KOOS Sports scores (mean, 20.5; SD, 14.0). Cluster 5 (revision rate, 3.1%) patients were older (mean age, 42 years; SD, 7 years),
received HT autograft (89%), and had low baseline KOOS Sports scores (mean, 23.4; SD, 17.6).

Conclusion: Unsupervised learning identified 5 distinct KLR patient subgroups and each grouping was associated with a unique
ACLR revision rate. Patients can be approximately classified into 1 of the 5 clusters based on only 3 variables: age, graft choice
(HT, BPTB, or QT autograft), and preoperative KOOS Sports subscale score. If externally validated, the resulting groupings may
enable quick risk stratification for future patients undergoing ACLR in the clinical setting. Patients in cluster 1 are considered high
risk (9.9%), cluster 2 patients medium risk (6.9%), and patients in clusters 3 to 5 low risk (3.1%-4.7%) for revision ACLR.

Keywords: ACL revision; outcome prediction; machine learning; artificial intelligence; unsupervised learning

Machine learning represents an increasingly used
approach within the orthopaedic literature due to the abil-
ity to process large volumes of complex data and develop
clinically useful diagnostic, prognostic, or data collection

models.30,32 The 3 main categories of machine learning
approaches are supervised learning, unsupervised learn-
ing, and reinforcement learning. Most of the orthopaedic
studies to date have applied a supervised learning
approach, referring to the analysis of labeled data. In the
supervised learning approach, the computer algorithm is
provided with variables that are labeled as either a ‘‘predic-
tor’’ or an ‘‘outcome,’’ and the model is tasked with predict-
ing a specified outcome. In contrast, unsupervised learning
involves the analysis of unlabeled data whereby the model
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is tasked with independently finding patterns in the data
set. This process enables the interpretation and simplifica-
tion of highly complex data through the identification of
hidden structures and patterns.7

Within orthopaedic research, unsupervised learning
approaches have recently been used to stratify groups of
patients according to their risk of hip osteoarthritis pro-
gression17 and to identify subphenotypes of osteoarthritis
based on blood-based biochemical markers.2 These exam-
ples highlight how a novel approach to a common problem
can provide insight into the factors associated with com-
plex clinical conditions. Outcome after anterior cruciate
ligament (ACL) injury and subsequent ACL reconstruction
(ACLR) is one such example of a clinical condition that
evades complete understanding, despite troves of litera-
ture on the subject. Studies from the national knee liga-
ment registers, Multicenter Orthopaedic Outcomes
Network, and others have helped identify age, activity
level, graft choice, fixation device, and posterior tibial slope
as some factors that influence failure risk.5,10,16,28,29,34,41

Despite recognition of these and other risk factors for
a poor outcome,11,19,25,35 along with recent advancements
in surgical decision-making and techniques,6,8,27,33,39

highly accurate clinical prediction models remain elusive.
One constraint to accurate patient-specific outcome predic-
tion is the sheer volume of risk factors that may contribute
to a patient’s outcome and, specifically, the limited ability
to synthesize the complex and often unrecognized interac-
tions between these factors.

The Norwegian Knee Ligament Register (NKLR) and
Danish Knee Ligament Reconstruction Registry (DKRR)
have been prospectively collecting data related to ACLR in
their respective countries for nearly 20 years.9,31 Since their
inception, these national registers have produced several
studies on ACL treatment and outcomes and have recently
developed preliminary outcome prediction models using
supervised machine learning methodology.15,20-23 The pres-
ent study sought to further investigate the factors associ-
ated with subsequent ACLR revision through the
application of unsupervised learning techniques to the com-
bined Norwegian and Danish knee ligament register (KLR).
The primary goal of this analysis was to identify distinct

subgroups of patients within the registers and determine
if the rate of subsequent revision ACLR differs between
the patient clusters. The hypothesis was that unsupervised
learning would facilitate the grouping of patients based on
common characteristics and that this would enable the iden-
tification of high- and low-risk groups of patients.

METHODS

Ethics

Informed consent was obtained prospectively from all
patients enrolled in the NKLR and the Norwegian Data
Inspectorate grants permission for the NKLR to collect,
analyze, and publish on these health data. Data registra-
tion was performed according to European Union data pro-
tection rules, with all data deidentified before retrieval.
The regional ethics committee stated that further ethics
approval was not necessary.9 Similarly, the DKRR pro-
spectively obtained informed consent at the time of enroll-
ment and patient data were deidentified before retrieval
with no further ethics approval required.

Data Preparation

Patients with primary ACLR surgery dates from June
2004 through December 2020 were included. Patients
with missing values for graft choice, those with graft choice
recorded as ‘‘direct suture,’’ and those with missing values
for the indicator of revision surgery were excluded. Varia-
bles contained within the combined KLR and considered
for analysis are shown in Table 1.

The activity that reportedly led to ACL injury was clas-
sified as a pivoting sport, nonpivoting sport, or other activ-
ity. Meniscal injuries were classified as present with
repair, present without repair (no treatment or partial
meniscectomy), or no meniscal injury. Cartilage injuries
were grouped according to the International Cartilage
Regeneration & Joint Preservation Society grading system
and recorded as grade 1 or 2, grade 3 or 4, or no cartilage
injury. Additionally, a predictor indicating if a patient
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TABLE 1
Patient Characteristicsa

Variable Combined Data, n = 62,955 Complete Case Data, N = 28,631

Revision 3205 (5.1) 1770 (6.2)
Mean follow-up time or time to revision, y 7.6 6 4.5 8.2 6 4.5
Mean age at surgery, y 28 6 11 28 6 10
Mean age at injury, y 27 6 10 27 6 10

Missing 1870
Sex

Male 36,509 (58) 15,671 (55)
Female 26,446 (42) 12,960 (45)

Mean presurgery KOOS QOL score 36.3 6 18.0 36.5 6 17.9
Missing 29,512

Mean presurgery KOOS Sports score 41.2 6 26.9 41.2 6 26.8
Missing 29,708

Below median on all presurgery KOOS Subscales 6372 (19) 5259 (18)
Missing 29,323

Activity that led to injury
Nonpivoting 20,391 (33) 8175 (29)
Pivoting 35,851 (57) 16,747 (58)
Other 6162 (9.9) 3709 (13)
Missing 551

Meniscal injury
Injury without repair 20,328 (32) 9568 (33)
Injury with repair 10,554 (17) 4640 (16)
None 32,061 (51) 14,423 (50)
Missing 12

Cartilage injury (ICRS grade)
1 or 2 8766 (14) 4195 (15)
3 or 4 3223 (5.1) 1627 (5.7)
None 50,878 (81) 22,809 (80)
Missing 88

Graft choice
BPTB 15,639 (25) 9000 (31)
Hamstring 43,518 (69) 18,356 (64)
QT/BQT 2520 (4.0) 888 (3.1)
Other 1278 (20) 387 (1.4)

Tibial fixation device
Interference screw 55,792 (90) 25,759 (90)
Suspension/cortical device 3643 (5.9) 2031 (7.1)
Other 2356 (3.8) 841 (2.9)
Missing 1164

Femoral fixation device
Interference screw 16,434 (27) 8793 (31)
Suspension/cortical device 39,742 (65) 17,502 (61)
Other 4822 (7.9) 2336 (8.2)
Missing 1957

Fixation device combination
Interference screw 3 2 15,865 (26) 8467 (30)
Interference/suspension 236 (0.4) 150 (0.5)
Suspension/cortical device 3 2 2994 (4.9) 1540 (5.4)
Suspension/interference 34,895 (58) 15,493 (54)
Other 6529 (11) 2981 (10)
Missing 2436

History of previous surgery on same kneeb 10,312 (17) 4540 (16)
Missing 673

History of previous cruciate ligament injury to opposite kneeb 4839 (8.1) 1977 (6.9)
Missing 2946

(continued)
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was below the median score in the respective register on all
presurgery Knee injury and Osteoarthritis Outcome Score
(KOOS) variables was also created.

Missing Data

A previous study applying supervised machine learning
models to the combined KLR data guided the approach to
missing data for this study.20 Briefly, supervised learning
models were trained and evaluated using complete data
on all variables. This was then repeated using multiple
imputation to assess the effect of restricting data to com-
plete cases. This is a common technique for dealing with
missing data that fills in incomplete values based on pat-
terns in the data. Multiple imputation allowed the assess-
ment of the reasonableness of restricting the analysis to
complete cases and found that multiply imputed data
were not notably different from the complete case analysis.
This means that there was no meaningful advantage of
data imputation for the predictive modeling. Therefore,
for this study only patients with complete data on all pre-
dictors were included in the analysis.

Unsupervised Learning

The machine learning methods used in this analysis were
all unsupervised, meaning the models were not trained to
produce predictions for a specific outcome variable.
Instead, unsupervised methods model how the data were
organized with respect to a given set of predictor varia-
bles.13 The applied unsupervised methods produced
groups, or clusters, of observations with similar relation-
ships among the predictor variables. Because unsuper-
vised learning does not train and then test predictions,
the sample was not split. The entire sample of patients
was used to build the unsupervised models and character-
ize the resulting clusters. All analyses were conducted in R
(Version 4.1.1; R Core Team).

Three unsupervised clustering methods were applied:
k-means (function kmeans; package stats), agglomerative
hierarchical clustering (function hclust; package fastclus-
ter26), and k-prototypes (function kproto; package

clustMixType36). K-means clustering required the user to
prespecify the number of clusters. The algorithm then
grouped the observations to minimize the sum of squares
from points to the cluster centers.12 To determine the num-
ber of clusters (k), a common technique called the elbow
method was used. In this approach, clusters were computed
for various possible values of k, and the within-cluster sums
of squares were calculated and plotted against the value of
k. The point at which this line bent sharply upward (the
elbow) dictated the optimal number of clusters (Figure 1).

This represented the fewest clusters that could be cre-
ated without a sharp increase in within-cluster heteroge-
neity.38 Agglomerative hierarchical clustering began with
each observation in its own cluster and yielded many pos-
sible partitions of decreasing complexity, requiring the
user to select a level of complexity (by specifying a desired
number of clusters).

K-means and agglomerative hierarchical clustering
only accommodates continuous predictor variables. To
overcome this limitation, a third method, k-prototypes,

TABLE 1
(continued)

Variable Combined Data, n = 62,955 Complete Case Data, N = 28,631

Median time injury to surgery, y 1.63 [0.33-1.32] 0.61 [0.33-1.29]
Missing 2083

Register
DKRR 34,554 (55) 10,487 (37)
NKLR 28,401 (45) 18,144 (63)

aData are presented as n, n (%), mean 6 SD, or median [IQR]. BPTB, bone–patellar tendon–bone autograft; DKRR, Danish Knee Liga-
ment Register; ICRS, International Cartilage Regeneration & Joint Preservation Society; KOOS, Knee injury and Osteoarthritis Outcome
Score; NKLR, Norwegian Knee Ligament Register; QOL, Quality of Life subscale; QT/BQT, quadriceps tendon autograft, with or without
bone; Sports, Sport and Recreation subscale.

bSurgery performed before primary anterior cruciate ligament reconstruction and enrollment in the register.

Figure 1. The elbow method to determine the number of
clusters for unsupervised learning analysis. The location
where the line bends sharply upward (circle) signifies the
elbow, representing the optimal number of clusters.
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which accommodated mixed type predictors, was used. K-
prototypes is similar to k-means in that it minimizes
within-cluster distance from the cluster mean when assign-
ing observations to a prespecified number of clusters. The
distance metric was a weighted combination of Euclidean
distance for continuous variables and the count of mis-
matched category labels for categorical variables. A data-
driven technique was used to select the weighting parame-
ter. The cluster ‘‘mean’’ was the mean for continuous varia-
bles and the mode for categorical variables. The elbow and
silhouette methods were used to define the optimal number
of k-prototypes clusters. The silhouette method identified
the number of clusters that maximized between-cluster
and minimized within-cluster dissimilarity.36

Measures of Cluster Quality

Unlike with supervised learning where models are trained on
a training set and evaluated against observed labels on a test
set, with unsupervised learning there are no labels for com-
parison. Assessing the quality of model results is therefore
more challenging and typically relies on heuristic arguments
and domain knowledge.13 Therefore, a combination of 2 data-
driven methods (elbow and silhouette) and domain knowledge
was used to choose the number of clusters.

Model Interpretability and Clinical Relevance

To identify the defining characteristics of each cluster, 7
orthopaedic surgeons (R.K.M., A.Pareek., A.Persson.,
H.V., G.M., M.L., L.E.) with subspecialty training in sports
medicine reviewed the patient groups and highlighted the
clinically relevant features based on their domain knowl-
edge and variable summaries. The goal was to define
each cluster in terms that would enable the assignment
of future patients to 1 of the 5 clusters. To aid in cluster
interpretation, SHapley Additive exPlanations (SHAP)
analysis was also performed.18 This required a 2-step pro-
cess: (1) build a classification model predicting clusters
from input variables and (2) compute SHAP values for
this classification model. First, a gradient boosting model
was trained to predict the cluster number using all predic-
tor variables originally used for clustering (R package
xgboost). Gradient boosting is a tree-based machine learn-
ing method that can be used for classification with multiple
classes, such as in this situation.4 Next, SHAP values were
computed for this model using built-in functions in the
xgboost package. The SHAP values explained the contribu-
tions of input variables in each cluster by summarizing
their influence on individual predictions. Cluster-specific
Kaplan-Meier curves were created to describe each clus-
ter’s mean risk of revision surgery.

RESULTS

Participants

After data cleaning, a process whereby incorrect, duplicate,
or incomplete data were removed or corrected, the

combined register population consisted of 62,955 patients,
55% from the DKRR and 45% from the NKLR. The primary
outcome, revision surgery, occurred in 5.1% of patients
during a mean follow-up time of 7.6 years (SD, 4.5 years).
The population was 55% male with median ages at primary
injury and surgery of 24 years (IQR, 18-34 years) and 26
years (IQR, 20-36 years), respectively. After removing
patients with missing predictor variables, the study popu-
lation consisted of 28,631 patients. Characteristics of the
study population at the time of surgery along with the com-
plete case data set are presented in Table 1.

Clustering Results

The k-prototypes method was chosen because it accommo-
dated both continuous and categorical predictors. The opti-
mal number of clusters was set at 5 via a combination of
the data-driven elbow and silhouette methods and domain
knowledge (Figure 1). A description of the 5 clusters is pre-
sented in Table 2 and Figure 2. Figure 3 presents the
SHAP values for all clusters. Cluster-specific Kaplan-
Meier curves demonstrating the revision risk profiles for
the 5 patient groups are presented in Figure 4.

Surgeon domain knowledge and SHAP values were
used to interpret the variable summaries and simplify
the distinguishing characteristics of each cluster for clini-
cal relevance. Cluster 1 (revision rate, 9.9%) patients
were young (mean age, 22 years; SD, 6 years) and more
often female (60%), received hamstring tendon (HT) auto-
graft (91%), and had lower baseline KOOS Sport and Rec-
reation (Sports) scores (mean, 25.0; SD, 15.6). Cluster 2
(revision rate, 6.9%) patients received HT autograft
(89%), were more often male (68%), and had higher base-
line KOOS Sports scores (mean, 67.2; SD, 16.5). Cluster
3 (revision rate, 4.7%) patients received bone–patellar ten-
don–bone (BPTB) or quadriceps tendon (QT) autograft
(94%) and had higher baseline KOOS Sports scores
(mean, 65.8; SD, 16.4). Cluster 4 (revision rate, 4.1%)
patients received BPTB or QT autograft (88%) and had
low baseline KOOS Sports scores (mean, 20.5; SD, 14.0).
Cluster 5 (revision rate, 3.1%) patients were older (mean,
42; SD, 7 years), underwent ACLR with HT autograft
(89%), and had low baseline KOOS Sports scores (mean,
23.4; SD, 17.6).

DISCUSSION

The most important finding of this study was that unsu-
pervised learning analysis of the combined KLR identified
5 distinct patient subgroups among patients undergoing
primary ACLR, which are clinically distinguishable based
on age, graft type, and baseline KOOS Sports score. Each
grouping was associated with its own unique rate of subse-
quent ACLR revision. If externally validated, the results of
this analysis could be applied in the clinical setting to clas-
sify patients into 1 of the 5 clusters. This would enable
rapid estimation of the risk of subsequent revision ACLR
and could be used to guide preoperative discussions and
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surgical decision-making with patients undergoing pri-
mary ACLR.

To our knowledge, this is the first unsupervised learn-
ing analysis of an ACLR database. Unsupervised learning
is a useful adjunct to clinical risk prediction efforts, as it
may find patterns in data sets like the KLR without man-
ual specification, which can be used to guide decision-
making and prognostication.7 Unsupervised learning

models consider all variables in the data set that are cate-
gorized as predictors and are blind to the outcome for each
patient (in this case, revision surgery). The algorithm is
then tasked with finding common groups of patients within
the data set, breaking them into different clusters. These
clusters are arrived upon through complex analysis that
is not explicitly directed by human instruction. Once the
clusters have been identified, the outcome can be assessed

TABLE 2
Characteristics of Clusters Using k-Prototypes Methoda

Variable
Cluster 1,
n = 7038

Cluster 2,
n = 7693

Cluster 3,
n = 4118

Cluster 4,
n = 4852

Cluster 5,
n = 4930

Revision 695 (9.9) 532 (6.9) 193 (4.7) 198 (4.1) 152 (3.1)
Mean follow-up time or time to revision, y 8.2 6 4.3 8.5 6 4.3 7.5 6 4.8 8.0 6 5.0 8.8 6 4.2
Mean age at surgery 22 6 6 25 6 9 25 6 9 30 6 10 42 6 7
Mean age at injury 21 6 6 24 6 8 23 6 8 28 6 9 40 6 8
Sex

Male 2808 (40) 5198 (68) 2473 (60) 3036 (63) 2156 (44)
Female 4230 (60) 2495 (32) 1645 (40) 1816 (37) 2774 (56)

Mean presurgery KOOS QOL score 29.7 6 13.9 49.1 6 16.1 47.6 6 15.7 25.5 6 13.4 28.4 6 14.4
Mean presurgery KOOS Sports score 25.0 6 15.6 67.2 6 16.5 65.8 6 16.4 20.5 6 14.0 23.4 6 17.6
Below median on all presurgery KOOS Subscales 1852 (26) 0 (0) 0 (0) 1738 (36) 1669 (34)
Activity that led to injury

Nonpivoting 1524 (22) 1746 (23) 931 (23) 1069 (22) 2905 (59)
Pivoting 4863 (69) 5273 (69) 2730 (66) 2796 (58) 1085 (22)
Other 651 (9.2) 674 (8.8) 457 (11) 987 (20) 940 (19)

Meniscal injury
Injury without repair 2182 (31) 2467 (32) 1277 (31) 1723 (36) 1919 (39)
Injury with repair 1305 (19) 1183 (15) 774 (19) 905 (19) 473 (9.6)
None 3551 (50) 4043 (53) 2067 (50) 2224 (46) 2538 (51)

Cartilage injury (ICRS grade)
1 or 2 808 (11) 930 (12) 632 (15) 898 (19) 927 (19)
3 or 4 262 (3.7) 280 (3.6) 176 (4.3) 389 (8.0) 520 (11)
None 5968 (85) 6483 (84) 3310 (80) 3565 (73) 3483 (71)

Graft choice
BPTB 424 (6.0) 579 (7.5) 3565 (87) 4035 (83) 397 (8.1)
Hamstring 6388 (91) 6884 (89) 224 (5.4) 478 (9.9) 4382 (89)
QT/BQT 152 (2.2) 142 (1.8) 270 (6.6) 252 (5.2) 72 (1.5)
Other 74 (1.1) 88 (1.1) 59 (1.4) 87 (1.8) 79 (1.6)

Tibial fixation device
Interference screw 6101 (87) 6688 (87) 3980 (97) 4594 (95) 4396 (89)
Suspension/cortical device 700 (9.9) 771 (10) 59 (1.4) 123 (2.5) 378 (7.7)
Other 237 (3.4) 234 (3.0) 79 (1.9) 135 (2.8) 156 (3.2)

Femoral fixation device
Interference screw 118 (1.7) 10 (0.1) 3955 (96) 4369 (90) 341 (6.9)
Suspension/cortical device 6284 (89) 6902 (90) 10 (0.2) 117 (2.4) 4189 (85)
Other 636 (9.0) 781 (10) 153 (3.7) 366 (7.5) 400 (8.1)

Fixation device combination
Interference screw 3 2 96 (1.4) 0 (0) 3845 (93) 4211 (87) 315 (6.4)
Interference screw femur/suspension tibia 15 (0.2) 8 (0.1) 50 (1.2) 63 (1.3) 14 (0.3)
Suspension/cortical device 3 2 587 (8.3) 619 (8.0) 9 (0.2) 13 (0.3) 312 (6.3)
Suspension femur/interference screw tibia 5523 (78) 6102 (79) 0 (0) 97 (2.0) 3771 (76)
Other 817 (12) 964 (13) 214 (5.2) 468 (9.6) 518 (11)

History of previous surgery on opposite kneeb 379 (5.4) 467 (6.1) 266 (6.5) 434 (8.9) 431 (8.7)
History of previous surgery on same kneeb 1043 (15) 1002 (13) 472 (11) 878 (18) 1145 (23)
Median time injury to surgery, y 0.54 [0.30-1.13] 0.64 [0.37-1.36] 0.63 [0.34-1.22] 0.58 [0.30-1.29] 0.68 [0.36-1.56

aData are presented as n (%), mean 6 SD, or median [IQR]. BPTB, bone–patellar tendon–bone autograft; ICRS, International Cartilage
Regeneration & Joint Preservation Society; KOOS, Knee injury and Osteoarthritis Outcome Score; QOL, Quality of Life subscale; QT/BQT,
quadriceps tendon autograft, with or without bone.

bSurgery performed before primary anterior cruciate ligament reconstruction and enrollment in the register.
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in each group. In this study, revision rate was the primary
outcome of interest, and this rate was different among each
of the 5 patient groups. Similarly, the survival for each
cluster was also distinct, allowing for a time-dependent
cluster-based estimation of revision risk.

Accurately assigning a patient to 1 of the 5 clusters
requires consideration of all variables included in the

analysis. However, with so many predictor variables to
consider, clinical interpretation and application of the
patient subgroups can be challenging. To increase the clin-
ical utility, the 5 patient clusters were reviewed by 7
subspecialty-trained orthopaedic sports medicine surgeons
for defining characteristics. The recently developed SHAP
analysis18 was also applied to increase the explainability

Figure 2. Continuous variable summaries by cluster. Box plots summarize the distributions of continuous predictor variables for
each of the 5 patient subgroups identified with the unsupervised learning procedure. KOOS, Knee injury and Osteoarthritis Out-
come Score; QOL, Quality of Life subscale; Sport, Sport and Recreation subscale.

AJSM Vol. 52, No. 4, 2024 Unsupervised Machine Learning to Predict ACLR Revision Rates 887



of the model and decrease the black-box effect. The clusters
were subsequently simplified into the following categories
(Figure 5):

! Cluster 1: young patient with HT autograft and low
baseline KOOS Sports score

! Cluster 2: patient with HT autograft and high baseline
KOOS Sports score

! Cluster 3: patient with BPTB or QT autograft and high
baseline KOOS Sports score

! Cluster 4: patient with BPTB or QT autograft and low
baseline KOOS Sports score

! Cluster 5: older patient with HT autograft and low base-
line KOOS Sports score

Based on the revision rates of each cluster, cluster 1 is con-
sidered high risk for revision surgery, cluster 2 is consid-
ered moderate risk for revision, and clusters 3 to 5 are
considered low risk. While the overall revision rate in the
KLR was 5.1%, nearly half (49%) of the patients fell into
one of the low-risk categories (clusters 3-5) with a revision
rate of 3.1% to 4.7%. On the other end of the spectrum,
cluster 1 patients demonstrated a revision rate of nearly
10%.

Closer inspection of the highest risk cluster (cluster 1)
reveals some interesting trends, including a higher propor-
tion of patients with HT autograft, young age, female sex,
and inferior baseline KOOS Sports scores. These factors
become especially apparent when compared with clusters

Figure 3. The plot shows mean absolute SHapley Additive exPlanations (SHAP) values by variable for all clusters. Colors in the
plot show the contributions from observations assigned to each cluster. BPTB, bone–patellar tendon–bone autograft; comb,
combined; fix., fixation; ICRS, International Cartilage Regeneration & Joint Preservation Society; KOOS, Knee injury and Osteo-
arthritis Outcome Score; QOL, Quality of Life subscale; QT/BQT, quadriceps tendon autograft, with or without bone; Sports, Sport
and Recreation subscale.

Figure 4. Kaplan-Meier survival curve for all 5 clusters.
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2 and 5, which also consisted primarily of HT reconstruc-
tion but demonstrated revision rates closer to the mean.
ACLR with HT autograft has previously been associated
with higher revision surgery rates based on the NKLR.28

Additionally, young age is a recognized risk factor for fail-
ure of ACLR.14,40,41 Interestingly, the finding that young
women receiving HT autograft (cluster 1) may be consid-
ered to have the highest risk for subsequent revision sur-
gery is a novel finding. While it is generally accepted
that female sex is associated with a higher risk of initial
ACL injury,37 it has not been found to be associated with
higher ACLR revision rates.1,3,14,24 Similarly, the authors
are not aware of any literature associating preoperative
KOOS Sports scores and subsequent revision risk. This
unsupervised learning analysis suggests that because of
the complex nature of the interactions between predictor
variables, for some patients in certain circumstances, var-
iables such as sex and preoperative patient-reported out-
come measures may be important risk factors.

There are limitations to the present study. First, com-
plete case data were available for less than half of the
KLR, decreasing the number of patients available for anal-
ysis. Despite the missing data, however, .28,000 patients
were included, which is sufficient for the purpose of unsu-
pervised machine learning model development, and the
inclusion of patients from 2 national databases increases
generalizability. Another limitation is that the KLR is pri-
marily composed of patients who received either HT,
BPTB, or QT autograft. There were not enough patients
receiving other graft choices such as allograft to have
a meaningful effect on the clustering. These additional
data would be useful in future studies to evaluate whether
patients receiving allograft would form their own distinct
clusters. The primary outcome measure of revision surgery
represents another limitation, as some patients who expe-
rience graft failure or inferior clinical surgical outcome do
not undergo subsequent revision surgery. Additionally, it
is possible that an alternative unsupervised learning
method may have yielded different results. There are

several alternative approaches to unsupervised learning,
such as principal component analysis, anomaly detection,
and divisive hierarchical clustering, among others. How-
ever, the 3 unsupervised learning methods evaluated
with this study represent the most common and appropri-
ate for the data type and goals of this study. Finally, other
factors potentially associated with failure of ACLR, such as
pivot-shift grade, tibial slope, rehabilitation details, and
surgical adjuncts such as lateral extra-articular tenodesis
or anterolateral ligament reconstruction, were not cap-
tured in the KLR and were not considered in the analysis.
The inclusion of these variables in future data collection
may yield different clustering results.

There are also limitations to the clinical interpretability
of this unsupervised analysis because of the complex deter-
mination of cluster characteristics. The simplified summary
of each cluster may not consider certain relevant character-
istics, which may lead to inaccurate risk estimation in the
office setting. Considering, for example, that nearly 12% of
the patients in cluster 4 received grafts other than BPTB
or QT, suggests that there is more to the groupings than
simply graft choice and KOOS Sports score. Similarly, con-
tinuous variables such as age and KOOS values can be chal-
lenging to interpret, for example, when defining what
constitutes the cutoff point for high or low preoperative
KOOS values. Finally, because of the nature of the study
investigating revision rates of unsupervised learning–based
clusters, the accuracy of the risk estimates was not exter-
nally validated. This represents the most important next
step before prospective clinical application is recommended.

CONCLUSION

Unsupervised learning enabled the identification of 5 dis-
tinct KLR patient subgroups, and each grouping was asso-
ciated with a unique ACLR revision rate. Patients can be
approximately classified into 1 of the 5 clusters based on
only 3 variables: age, graft choice (HT, BPTB, or QT

Figure 5. Tree diagram for approximate patient classification by cluster. BPTB, bone–patellar tendon–bone autograft; KOOS,
Knee injury and Osteoarthritis Outcome Score (Sports subscale); QT, quadriceps tendon autograft, with or without bone.
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autograft), and preoperative KOOS Sports subscale score.
If externally validated, the resulting groupings may enable
quick risk stratification for future patients undergoing
ACLR in the clinical setting. Patients in cluster 1 are con-
sidered high risk (9.9%) for subsequent revision ACLR,
patients in cluster 2 medium risk (6.9%), and patients in
clusters 3 to 5 low risk (3.1%-4.7%).
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