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A B S T R A C T

Objective: To investigate the value of ultrasonographic data in predicting total knee replacement (TKR).
Design: Data from the Musculoskeletal Pain in Ullensaker study (MUST) was linked to the Norwegian Arthroplasty
Register to form a 5–7 year prospective cohort study of 630 persons (69% women, mean (SD) age 64 (8.7) years).
We examined the predictive power of ultrasound (US) features, i.e. osteophytes, meniscal extrusion, synovitis in
the suprapatellar recess, femoral cartilage thickness, and quality for future knee osteoarthritis (OA) surgery. We
investigated 4 main settings for multivariate predictive modeling: 1) clinical predictors (age, sex, body mass
index, knee injury, familial OA and workload), 2) radiographic data (assessed by the Kellgren Lawrence grade, KL)
with clinical predictors, 3) US features and clinical predictors. Finally, we also considered an ensemble of models
2) and 3) and used it as our fifth model. All models were compared using the Average Precision (AP) and the Area
Under Receiver Operating Characteristic Curve (AUC) metrics.
Results: Clinical predictors yielded AP of 0.11 (95% confidence interval [CI] 0.05–0.23) and AUC of 0.69
(0.58–0.79). Clinical predictors with KL grade yielded AP of 0.20 (0.12–0.33) and AUC of 0.81 (0.67–0.90). The
clinical variables with ultrasound yielded AP of 0.17 (0.08–0.30) and AUC of 0.79 (0.69–0.86).
Conclusion: Ultrasonographic examination of the knee may provide added value to basic clinical and demographic
descriptors when predicting TKR. While it does not achieve the same predictive performance as radiography, it
can provide additional value to the radiographic examination.
1. Introduction

The rising incidence of total knee replacement (TKR) surgery during
the past decades is a growing concern across the world [1–5]. These
surgeries are performed primarily due to osteoarthritis (OA), and most
patients report good clinical outcomes [6]. However, the costs of these
procedures are high and exceed $10 billion annually in the United States
[7]. Furthermore, TKR may require revisions, which alone reach $2.7
billion in hospital charges in the United States [8] and have a significant
impact on the quality of life of patients with OA.
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In recent decades, there has been a growing interest in developing
predictive models for TKR [9–12] and OA progression in general [13,14].
If persons at high risk of TKR or OA progression could be identified at
early stages, behavioral interventions such as weight loss and exercise
programs may be implemented to prevent further rapid development of
the disease [15]. Further, prediction models may be used for a more
accurate selection of individuals into clinical trials or observational
studies. Most of the previous works show two main components needed
to obtain fairly good predictive performance: 1) the use of imaging data
and 2) the use of advanced modeling methods, based on machine
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learning (ML). The main benefit of ML, compared to statistical inference,
is the objective to optimize a metric of interest, such as the performance
on unseen (test) data.

The major clinical limitation of previous development of predictive
models is the use of modalities that are costly, such as magnetic reso-
nance imaging (MRI). Although contributing to the understanding of the
etiology of OA, they are less useful in the clinical setting when the aim is
to predict OA progression. As an example, for suspected early OA in the
clinical setting, there is a need for more available modalities that provide
the diagnostic and predictive value at least comparable to the existing
ones.

Although ultrasonography (US) requires thorough expert training and
is currently not a part of the standard clinical evaluation of OA, it is a
promising future imaging tool as it uniquely allows for the immediate
assessment of soft tissues, such as menisci and cartilage [16]. In contrast
to X-ray, it enables a three-dimensional assessment of the joint without
emitting radiation. Recent works indicate that US has a potential to
identify OA features almost to an equal extent as MRI [17], and to our
knowledge, no studies have assessed its value in predicting TKR. We
hypothesized that when used with advanced modeling methods, US
could serve as a low-cost and easily available tool to predict TKR, and we
aimed to investigate it in the present work.

2. Methods

2.1. Data

2.1.1. The MUST study
We used data from the Musculoskeletal Pain in Ullensaker study

(MUST), a population-based prospective cohort study in South-Eastern
Norway that was initiated in 2010 and linked to the Norwegian
Arthroplasty Register in 2017 (approved by Regional Ethics Committee).
In total, 630 persons with knee, hip and/or hand OA as reported on postal
questionnaires attended an extensive baseline clinical examination in
2010–12 [18]. Other than having complete data on knee ultrasound and
radiographs and no knee prosthesis surgery at the joint level at baseline,
we had no specific inclusion/exclusion criteria. Participants were
allowed to have knee pain at baseline but were not required to. The
Norwegian Arthroplasty Register covers >95% of all prosthesis surgeries
in Norway with registration of cause and date of surgery as well as joint
site [19]. More than 80% of TKRs in Norway are done for primary OA
[20]. Incident arthroplasty due to primary OA in the left or right knee
joint were our main outcome variables. Thus, arthroplasty due to other
causes than OA (i.e. fractures, inflammatory rheumatic diseases etc.)
were excluded.

2.1.2. Ultrasonography
A sonographic examination of both knee joints of all participants was

performed at baseline using the same ultrasound machine across all ex-
aminations (Siemens Medical Solutions, Excellence version, Mountain
View, California, USA), with fixed settings used for all knees (a 5–13MHz
linear array transducer, power Doppler with frequency 7.3 MHz and
pulse repetitive frequency 391 Hz). Two sonographers (a rheumatologist
with 15þ years of ultrasound experience (HBH) and a trained medical
student with 2þ years of experience (AM)) performed semiquantitative
assessments together and reached consensus on each joint scoring,
making it possible to discuss the grades consecutively if disagreement.
The sonographers were blinded to clinical and other imaging results.
Femoral and tibial osteophytes were scored for the lateral and medial
side on a 0–3 scale (0 ¼ none, 1 ¼ minor, 2 ¼ moderate and 3 ¼ major
size of osteophytes) with the participant lying in supine position with
knees extended. In the same position, medial and lateral meniscal pro-
trusions were scored 0–2 (0 ¼ none, 1 ¼ minor and 2 ¼ major) whereas
synovitis in the suprapatellar recess was assessed as a combined evalu-
ation of effusion and synovitis scored 0–3 (0 ¼ none, 1 ¼ minor, 2 ¼
2

moderate, 3 ¼major). With the knee maximally flexed, femoral cartilage
thickness (FCT) was assessed in millimeters for the medial and lateral
condyle and the sulcus. The femoral cartilage quality (FCQ) was scored
0–2, i.e. from normal to considerable hyperechoic/absent (0 ¼ normal, 1
¼ minor, 2 ¼ major). Femoral hyaline cartilage was scored as present or
absent of calcium crystal pyrophosphate depositions (none vs present).
Examples of ultrasound images, their scoring as well as assessment of
intra- and interrater reliability are provided in our previous work [21].

2.1.3. X-ray imaging
Knee X-rays were obtained at the baseline examination using a

positioning frame (SynaFlexer™) with standardised knee flexion angle to
20� and external foot rotation to 5� (10� beam angle) by a medical stu-
dent. The x-rays views include anterior-posterior, lateral and patella
tangential. The radiographs were scored by a medical student from 0 to 4
according to the Kellgren-Lawrence (KL) atlas [22] using the software
Pacs in 2012–13. KL grade 0 indicates no OA, 1 – doubtful OA, 2 – early
OA, 3 – moderate OA, and KL 4 – severe OA.

2.1.4. Clinical variables
In addition to the joint imaging data, we included predictors from the

most widely validated andmost widely used predictionmodel in knee OA
to date [9,23]. Body mass index (BMI), kg/m2 was calculated from
measured height and weight. Information on up to three knee injuries per
knee was validated by a nurse and grouped into present or absent knee
injury (ever in life) until the date of examination. Familial OA was
self-reported as any OA present in mother, father and/or sibling. Occu-
pational load was self-reported as having any current or previous work
activities including heavy lifting, work in challenging positions etc.
2.2. Modeling approach

2.2.1. Logistic regression
Logistic regression (LR) is a parametric linear model, which predicts

the probability of a binary outcome. In the field of OA, LR has been
widely used for TKR and other prediction tasks [1,9,13,24–26], and we
therefore chose it as our reference modeling method. Conventionally in
medical literature, LR is fit to data, and its coefficients are later looked at
to understand the relation between the covariates and the outcomes. In
the case of our work, however, we target the accuracy of prediction using
highly correlated covariates. To account for this, we used L2 regulariza-
tion technique (also known as Ridge penalty) [27,28], and searched for
its strength, using the cross-validation (CV) procedure defined in the
sequel.

2.2.2. Model configurations
Due to the expected sparsity of ultrasound findings for osteophytes

and cartilage quality when these were assessed on an ordinal scale (0–3
and 0–2, respectively), we created new variables for inclusion in our
models. Firstly, we derived an osteophytes binary variable, which was
indicative of any osteophytes with grade �1 detected by an assessor in
ultrasound. We also created a variable that was indicative of the cartilage
quality. Here, we collapsed the presence of hyalin cartilage and femoral
cartilage quality grade�1 into a single variable (from now called femoral
cartilage quality).

In the multivariate analyses, we evaluated the predictive ability of
five different multivariate models including different variations of clin-
ical characteristics, KL grade and ultrasound features as described in
Table 1. Our final approach for prediction (model 5) was based on a
combination of two predictive models – the one with radiography, and
the one with ultrasound, with both including clinical data. Ensembling of
different models helps to increase model performance and can be viewed
as a voting of two experts with different background. In our study, we
averaged two probability outputs coming from models 2 and 3 to obtain
model 5 [29].



Table 1
Evaluated model configurations.

Model Features included to the model

Model 1 Age, Sex, BMI, knee injury, familial OA, occupational load
Model 2 Model 1 features þ KL grade
Model 3 Model 1 features þ ultrasound features
Model 4 Model 1 features þ ultrasound features þ KL grade
Ensemble Ensemble of models 2 and 3

BMI¼Body Mass Index.
OA¼Osteoarthrtis
KL grade ¼ Kellgeren Lawrence grade.

Table 2
Baseline characteristics of the MUST at the knee joint level.

Knee joints without
later surgery
N ¼ 1084

Joints with later
surgery
N ¼ 30

Clinical characteristics
Age, mean (SD) 63.8 (8.7) 63.7 (7.3)
Women, n (%) 748 (69.0) 21 (70.0)
Body Mass Index (kg/m2), mean (SD) 27.9 (4.6) 30.7 (5.1)
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2.3. Experimental setup

2.3.1. Nested leave-one-out cross-validation
To assess the generalization of our modeling approach, we used a

nested cross-validation procedure. As our dataset has multiple mea-
surements from the same patient, leave-one-patient out cross-validation
(LOO-CV) strategy was applied [30]. This was done to mitigate bias in
estimating cross-validation (CV) error, which comes from overfitting to
the best set of hyperparameters. For each such a split, we searched for the
model hyperparameters using another, nested 5-fold patient-wise
cross-validation loop, which was individually created for every split.
Using these splits, we also searched for models' thresholds to produce
binary (dichotomized) predictions. Eventually, we retrained the model
using the best hyperparameters found on the nested CV to make a pre-
diction for the test subject, and then averaged the results. A graphical
illustration of our CV pipeline is shown in Fig. 1.

2.3.2. Analyses and experimental details
First, we studied the descriptive statistics of the dataset of all the

included clinical characteristics and imaging features. We examined
whether each of the ultrasound features, as well as the KL grade and
clinical predictors, were predictive of knee OA surgery in the same joint
in univariate analyses using logistic regression and computed the odds
ratio for each of them. Similar to the univariate analyses, we used odds
ratios as means to explain the models. However, as the results for the
multivariate predictive models are evaluated using the LOO-CV, we get
multiple estimates of the model parameters. Thus, in the paper, we report
the mean and standard deviations of odds ratios across LOO-CV itera-
tions. All analyses were performed on the joint level, meaning that the
models did not need to take two knees from the same individual during
training, but we made sure that two knees from the same patient were
always either in the train or in the test sets in the internal CV loop.
Fig. 1. Nested LOO-CV (leave-one-patient-out cross-validation) procedure. In
the outer loop of our pipeline, we removed one subject (one or two knees) from
the training data. On the remaining part, we searched for optimal hyper-
parameters, test on the left-out subject using 5 models, corresponding to the best
set of hyperparameters from all the folds, and store the results. This process is
repeated for all subjects in the dataset.
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To implement the logistic regression, we used scikit-learn v0.24.2
[31]. LOO-CV routine was implemented ad-hoc, and the computations
were made parallel (per one testing subject) (Fig. 1). The regularization
coefficient for the logistic regression was searched optimized using the
internal CV loop. We used L-BFGS-B optimizer [32] for model training.
After computing the LOO-CV, we were able to test the performances of all
the models described in Table 1.

We used the area under the receiver operating characteristic (ROC-
AUC) and the area under the precision-recall curve (AP). In classification
problems, the ROC curves reflect the trade-off between the true positive
rate and the true negative rates of a classifier. The precision-recall curve
reflects the trade-off between the positive predictive value of the classi-
fier and the true positive rate [33]. The area under the derived curve is
then used as AP. The model performances were compared using the 1000
times stratified bootstrap with 95% CI.

3. Results

3.1. Descriptive findings

Of the in total 630 persons with available baseline data, 40 persons
had already undergone total knee surgery, 29 persons had missing data
on ultrasound and/or other features and 4 joints had surgery due to other
reasons during follow-up. Thus, we excluded in total 73 persons and
studied in total 557 persons with their 1114 knee joints. The study
sample consisted of 69% women and with the age 64 � 8.7 years old
(Table 2). After 5–7 years (because some had their baseline examination
in 2010 and others in 2012), in total 30 (2.7%) persons had an incident
total knee surgery due to primary OA.
3.2. Univariate analyses

We first conducted univariate analyses to assess the predictive power
of individual covariates (Table 3). Based on these analyses, one can see
Knee injury, n (%) 201 (18.5) 15 (50.0)
Familial OA, n (%) 582 (53.7) 21 (70.0)
High occupational load, n (%) 228 (21.0) 7 (23.3)
Knee pain last week, n (%) 428 (39.5) 25 (83.3)
Radiographic scoring
Kellgren Lawrence, grade 0, n (%) 726 (67.0) 5 (16.7)
Kellgren Lawrence, grade 1, n (%) 189 (17.4) 3 (10.0)
Kellgren Lawrence, grade �2, n (%) 169 (15.6) 22 (73.3)
Ultrasonographic scoring
�1 Osteophytes, n (%) 318 (29.6) 25 (86.2)
Medial or lateral meniscal extrusion
grade �1, n (%)

279 (25.7) 5 (16.7)

Suprapatellar synovitis grade �1, n
(%)

261 (24.1) 15 (50.0)

Femoral cartilage thickness, mm,
mean (SD)

Medial 2.1 (0.6) 2.5 (0.6)
Lateral 2.1 (0.6) 2.3 (0.5)
Sulcus 2.7 (0.8) 3.1 (0.7)
Femoral cartilage quality grade �1, n
(%)

179 (16.5) 11 (36.7)

Femoral hyalin cartilage grade �1, n
(%)

6 (0.6) 0 (0)

Mm; millimeter, kg; kilogram, m; meter, OA; osteoarthritis, SD; standard
deviation.



Table 3
Univariate analyses of some individual features with 95%confidence intervals (CI). CI were computed with stratified bootstrapping with 1000 iterations.

Data source Feature OR P-value AP AUC

Patient Age 1.00 0.98 0.03 (0.02–0.04) 0.48 (0.39–0.57)
Sex 1.05 0.91 0.03 (0.02–0.03) 0.50 (0.42–0.58)
Body Mass Index 1.12 0.00 0.06 (0.04–0.10) 0.67 (0.56–0.77)
Injury 4.39 0.00 0.05 (0.03–0.07) 0.66 (0.57–0.74)
Familial OA 2.01 0.08 0.03 (0.03–0.04) 0.58 (0.49–0.66)
Occupational load 1.14 0.76 0.03 (0.03–0.04) 0.51 (0.44–0.59)

Radiography KL-grade 3.13 0.00 0.18 (0.11–0.27) 0.84 (0.74–0.91)
Ultrasonography OST 16.17 0.01 0.04 (0.03–0.04) 0.66 (0.61–0.69)

Synovitis grade � 1 2.06 0.00 0.05 (0.03–0.10) 0.64 (0.54–0.73)
Meniscal extrusion grade � 1 0.58 0.27 0.03 (0.03–0.03) 0.45 (0.39–0.52)
Femoral cartilage thickness, mm
Lateral 1.60 0.14 0.04 (0.03–0.05) 0.60 (0.48–0.69)
Sulcus 1.96 0.00 0.05 (0.03–0.08) 0.66 (0.55–0.74)
Medial 2.65 0.00 0.06 (0.04–0.13) 0.66 (0.56–0.75)
Femoral cartilage quality 2.81 0.01 0.04 (0.03–0.06) 0.60 (0.51–0.68)

OA ¼ osteoarthritis.
OR ¼ odds ratio.
AUC ¼ Area under the ROC curve.
AP ¼ Average Precision.
OST¼Presence of osteophytes with grade � 1
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that previous injury (OR of 4.39) and familial OA (OR of 2.01) are the
most predictive of TKR among the patients’ characteristics. However, in
the univariate setup, the presence of past injury yielded close to random
performance – AP of 0.05 (0.03–0.07) and AUC of 0.66 (0.57–0.74)
despite being significant. Familial OA yielded AP of 0.03 (0.03–0.04) and
AUC of 0.58 (0.49–0.66) and was not significant. Radiographic infor-
mation presented by a KL-grade had an OR of over 3 and was a significant
predictor. It yielded AP of 0.18 (0.11–0.27) and AUC of 0.84 (0.74–0.91).

Among the ultrasound variables, the presence of osteophytes (OR of
16.17), synovitis (OR of 2.06), FCT in sulcus (OR of 1.96) andmedial (OR
of 2.65) compartments, and FCQ (OR of 2.81) were also found to be
significant predictors (Table 3). All these predictors yielded AP over 0.03.
Table 4
Multivariate modeling results with 95%confidence intervals (CI) on leave-one-subj
bootstrapping with 1000 iterations. AP of 0.03 indicates random performance. N/A in
to FCT-M were assessed from ultrasonographic examination. Ensemble of models 2 an
AUC of 0.83 (0.73–0.91).

Feature importance

Feature Model 1 Model 2

Age 1.1 (1.11–1.11) 0.89 (0.88
Sex 1.1 (1.09–1.10) 1.1 (1.09–
BMI 1.7 (1.67–1.68) 1.2 (1.16–
Injury 1.8 (1.81–1.83) 1.3 (1.26–
Familial OA 1.4 (1.43–1.44) 1.3 (1.29–
Occupational load 1.1 (1.08–1.09) 1.0 (1.05–
Synovitis grade N/A N/A
OST N/A N/A
ME N/A N/A
FCQ N/A N/A
FCT-L (lateral) N/A N/A
FCT-S (sulcus) N/A N/A
FCT-M N/A N/A
KL-Grade N/A 2.5 (2.48–
Performance
Metric name Model 1 Model 2
AP 0.11 (0.05–0.23) 0.20 (0.12
AUC 0.69 (0.58–0.79) 0.81 (0.67

BMI¼Body Mass Index.
OA¼Osteoarthritis.
OST¼Presence of osteophytes with grade �1.
ME ¼ Meniscal extrusion.
FCQ¼Femoral cartilage quality.
FCT-L ¼ Femoral lateral cartilage thickness.
FCT-S¼Femoral sulcus cartilage thickness.
FCT-M ¼ Femoral medial cartilage thickness.
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FCT in the medial compartment yielded the highest AP among all other
US features in univariate analyses - 0.06 (0.04–0.13). FCT in sulcus
yielded AP of 0.05 (0.03–0.08), which was similar to the presence of
synovitis – AP of 0.05 (0.03–0.10). AUC values for each of the covariates
are reported in Table 3.

3.3. Multivariate predictive modeling

After executing the univariate analyses, we evaluated our machine
learning approach on models shown in Table 1. These results are pre-
sented in Table 4. We found that the model containing the KL grade and
the basic patient characteristics (model 2) yielded the best AP scores
ect-out cross-validation. For the performance metrics CIs, were used stratified
dicates that feature has not been included into the model. Features from synovitis
d 3, which averaged their output probabilities yielded AP of 0.24 (0.13–0.39) and

Model 3 Model 4

–0.89) 1.1 (1.08–1.09) 0.97 (0.97–0.97)
1.10) 1.3 (1.27–1.28) 1.1 (1.14–1.16)
1.16) 1.4 (1.44–1.45) 1.2 (1.16–1.17)
1.26) 1.5 (1.45–1.46) 1.2 (1.18–1.18)
1.30) 1.4 (1.38–1.39) 1.2 (1.19–1.20)
1.05) 1.0 (1.03–1.03) 1.0 (1.01–1.01)

1.4 (1.39–1.39) 1.2 (1.19–1.19)
2.0 (1.94–2.01) 1.2 (1.22–1.23)
0.93 (0.93–0.93) 0.95 (0.95–0.95)
1.3 (1.29–1.30) 1.1 (1.09–1.09)
0.98 (0.98–0.98) 1.0 (1.01–1.02)
1.5 (1.51–1.52) 1.3 (1.28–1.30)
1.3 (1.29–1.29) 1.2 (1.15–1.16)

2.54) N/A 1.9 (1.90–1.96)

Model 3 Model 4
–0.33) 0.17 (0.08–0.30) 0.20 (0.12–0.34)
–0.90) 0.79 (0.69–0.86) 0.82 (0.71–0.90)
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among the models 1–4: AP of 0.20 (0.12–0.33) and AUC of 0.81
(0.67–0.90). Model 3, which relied of patient characteristics and features
from ultrasound examination yielded AP of 0.17 (0.08–0.30) and AUC of
0.79 (0.69–0.86).

Fig. 2 shows ROC and PR curves for the base model (model 1), and
two base models with imaging – the one with the KL grade (model 2), and
the one with the ultrasound features (model 3). One can see that the
imaging models behave differently in both ROC and AP spaces. Based on
these findings, we ensembled the predictions of models 2 and 3, and
compared the result to model 4, which naïvely incorporates the data from
radiography and ultrasonography in a single model, without model
ensembling (see all models features in Table 4).

The added value of the ensemble model compared to model 4 is
graphically shown in Fig. 3. The ensemble model while being less
interpretable, yielded a higher AP and AUC than all the models – AP of
0.24 (0.13–0.39) and AUC of 0.83 (0.73–0.91).

3.4. Model interpretation

Fig. 4 shows the feature importance for the models (ORs). The nu-
merical values for these plots are shown in Table 4. Given no other
modalities than patient's characteristics, BMI, past injury and familial OA
Fig. 2. Receiver Operating Curve (ROC) and Average Precision (AP) curves for the
Kellgren-Lawrence (KL) grade.

Fig. 3. Receiver Operating Curve (ROC) and Average Precision (AP) curves, showin
setup that includes patient clinical data, as well as the Kellgren-Lawrence (KL) grad
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were the main drivers for predicting TKR in model 1. In model 3 (US
features and patient-level characteristics), US-detected osteophytes
played the biggest role: OR of 2.0 (1.94–2.01). Past injury played a sec-
ondary role: OR of 1.5 (1.45–1.46). FCT of the sulcus produced a similar
OR of 1.5 (1.51–1.52). BMI OA and presence of synovitis with grade over
1 played the ternary role. The absence of meniscal extrusion was the
main factor for predicting the negative class – OR of 0.93 (0.93–0.93).
When US examination was combined with the KL grade in model 4
(patient characteristics þ US features þ KL grade), the main driver of
predicting TKR was the KL grade with OR of 1.9 (1.90–1.96). FCT in
sulcus compartment still played the secondary role in explaining TKR
predictions and yielded an OR of 1.3 (1.28–1.30). The absence of
meniscal extrusion was still the main factor explaining “no-TKR” pre-
diction with OR of 0.95 (0.95–0.95).

4. Discussion

In this paper, we have demonstrated that data from ultrasonography
allows to predict future total knee replacement. We have shown that
while it on itself does not outperform a conventional modeling approach
which is based on clinical data and a KL grade, the difference in per-
formance between an ultrasonography model and a KL grade model is
base model, base model with ultrasonographic data, and base model with the

g the added value of ultrasonography to the conventional predictive modeling
e.



Fig. 4. Feature importances (odds ratios) for the model containing patient characteristics, as well as the ultrasound features (model 4 in the text). Black bars indicate
standard deviation of importances across leave-one-out evaluations, and the red bars – the corresponding mean values. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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rather minor, especially when one considers wider 95% CIs for the KL
grade-based model. When combined with radiographic data, ultrasound
assessment provides an additional value in TKR prediction, suggesting it
has potential as a complimentary tool for clinical practice.

Ultrasound in OA assessment may have multiple clinical advantages
as it can be done immediately and, in many occasions, lowering the need
for referral to radiography [13] or more costly modalities, such as MRI
[34]. In contrast to x-rays it can detect soft tissue changes and meniscal
extrusion, which have been reported to be present in the earliest stages of
OA and predict later structural changes [35,36].

To our knowledge, this study is the first to make use of ultrasound
data and machine learning techniques to predict the future in OA, having
several implications. Our work sheds new light on recent findings
showing that osteophytes, medial meniscal extrusion, and morphological
articular cartilage changes in the medial femoral condyle of the knee
joint can be reliably identified by ultrasound [17]. We find about the
same prevalence of ultrasound features as in previous studies [16,17].
Here, we show that these data jointly, and when also combined with
clinical predictors, can estimate the likelihood of the future total knee
replacement. Still, the use of ultrasound in clinical practice will require
extensive training in operation and scoring and cannot be immediately
implemented as a routine part of the OA joint examination. Future
studies may be focused towards automatizing the reading and scoring of
ultrasound features during the ultrasound examination, for their imme-
diate use in prediction of future OA outcomes, allowing for an immediate
guidance of treatment options.

While our results should be interpreted with some caution because of
the low number of cases with total knee joint replacement surgery during
follow-up, we emphasize the strength of the evaluation setup in this
work. Specifically, in a low-sample setting like ours, it is important to
robustly identify hyperparameters of the model (such as e.g. regulari-
zation coefficient in logistic regression), and assess the model perfor-
mance without overfitting. Here, we applied the nested leave-one-out
cross-validation procedure that allowed to overcome the biases of model
assessment in the small-data regime [37]. Furthermore, we used a simple
linear model – logistic regression, to combat overfitting.

It is worth mentioning another methodological strength of this work.
Specifically, we used several metrics for the assessment of predictive
models – AP and AUC. Here, AP indicates the average positive predictive
value and AUC highlights the trade-off between the true and false posi-
tive rates. We highlight that the use of AUC as a main metric in the work
would be incorrect, since the dataset used for modeling has a very large
imbalance of classes (roughly 3% positive cases) [32].

Some important limitations of our study should also be mentioned.
First, we could only study persons who reported to be diagnosed with OA
in 2010–12 and who attended the clinical examination, with some risk of
selection bias. The percentage having knee OA prosthesis at baseline vs.
the percentage undergoing joint replacement surgery during follow-up
were similar (2.7–3.0%), implying that a portion of participants had
end-stage OA already at baseline. However, >80% had baseline Kellgren
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Lawrence 0–1 and 60% were pain free at baseline, implying that earlier
disease stages were widely represented. Hence, our study would have
captured any rapid progression.

The second limitation of our work was the amount of missing data on
ultrasound. To reflect the real clinical situation as good as possible, we
did not do multiple imputations or other actions to minimize conse-
quences of missing data. With more data and less imbalance, we might
have been better able to compare the models statistically in terms of non-
overlapping confidence intervals of AUC or AP. Third, our analyzes did
not consider adjusting for the fact that there were several knees from the
same subject. We have, however removed the duplicates from the LOO-
CV obtained predictions, and conducted metric evaluation on one knee
only, which lifted the scores of our prediction models. Specifically, AP for
model 5 was 0.33 (0.21–0.51) and AUC of 0.84 (0.75–0.92). For model 4
– AP was of 0.32 (0.21–0.51) and AUC of 0.82 (0.72–0.91).

The final limitation of this work is that we did not include knee pain
as a predictor, although baseline localized and/or widespread pain may
be hypothesized to predict future surgery equally well as ultrasono-
graphic and radiographic imaging. This was done to narrow-down the
research question and focus on imaging-assessed features. Future work
can expand upon this and investigate pain-related questionnaires,
quantitative sensory testing and also explore more advanced radio-
graphic assessments, such as quantitative joint space width imaging
biomarkers [38].

In conclusion, we found that ultrasound features (osteophytes,
meniscal protrusion, suprapatellar synovitis, femoral cartilage thickness
and quality) could predict future knee OA surgery cases almost equally
well to the Kellgren Lawrence scoring when combined with clinical data.
This present work demonstrated the first application of non-traditional
OA imaging modality and modeling methodology in prediction of total
knee replacement.
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